Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

Volume 52, issue 10, October 2010 ISSN 0950-5849

INFORMATION
AND
SOFTWARE
TECHNOLOGY

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Information and Software Technology 52 (2010) 1094-1117

journal homepage: www.elsevier.com/locate/infsof

Information and Software Technology

C

=[Ii.‘lkﬁ'af.'hrflﬂ‘-

TECHNOLOGY |

Contents lists available at ScienceDirect

)

I

«

Security requirements engineering framework for software product lines

Daniel Mellado ?, Eduardo Fernandez-Medina *, Mario PiattiniP

2 Spanish Tax Agency, Large Taxpayers Department - IT Audit Unit Paseo de la Castellana 106, 28046 Madrid, Spain
b University of Castilla-La Mancha. Alarcos Research Group, Information Systems and Technologies Institute, Information Systems and Technologies Department, ESI,

Paseo de la Universidad 4, 13071 Ciudad Real, Spain

ARTICLE INFO

Article history:

Received 16 October 2009

Received in revised form 3 May 2010
Accepted 11 May 2010

Available online 31 May 2010

Keywords:

Security requirements engineering
Security software engineering
Product lines

Requirements engineering
Security requirement

I1SO 27001

1. Introduction

ABSTRACT

Context: The correct analysis and understanding of security requirements are important because they
assist in the discovery of any security or requirement defects or mistakes during the early stages of devel-
opment. Security requirements engineering is therefore both a central task and a critical success factor in
product line development owing to the complexity and extensive nature of software product lines (SPL).
However, most of the current SPL practices in requirements engineering do not adequately address secu-
rity requirements engineering.
Objective: The aim of this approach is to describe a holistic security requirements engineering framework
with which to facilitate the development of secure SPLs and their derived products. It will conform with
the most relevant security standards with regard to the management of security requirements, such as
ISO/IEC 27001 and ISO/IEC 15408.
Results: This framework is composed of: a security requirements engineering process for SPL (SREPPLine)
driven by security standards; a Security Reference Meta Model to manage the variability of those SPL
artefacts related to security requirements; and a tool (SREPPLineTool) which implements the meta-model
and supports the process.
Method: A complete explanation of the framework will be provided. The process will be formally speci-
fied with SPEM 2.0 and the repository will be formally specified with an XML grammar. The application of
SREPPLine and SREPPLineTool will be illustrated through a description of a simple example as a prelimin-
ary validation.
Conclusion: Although there have been several attempts to fill the gap between requirements engineering
and SPL requirements engineering, no systematic approach with which to define security quality require-
ments and to manage their variability and their related security artefacts in SPL models is, as yet, avail-
able. The contribution of this work is that of providing a systematic approach for the management of the
security requirements and their variability from the early stages of product line development in order to
facilitate the conformance of SPL products with the most relevant security standards.

© 2010 Elsevier B.V. All rights reserved.

[5]. This signifies that present-day information systems are vulner-
able to a host of threats and cyber-attackers such as malicious

In recent years we have observed that more and more organiza-
tions have found themselves in difficulties as a result of security
breaches. In fact, according to the statistics provided by the Soft-
ware Engineering Institute’s CERT Coordination Centre, the num-
ber of reported application vulnerabilities rose from 171 in 1995
to 7236 in 2007 and to 6058 in the first nine months of 2008
[12]. The tendency towards larger systems that are distributed
throughout the Internet has caused many new security threats
[52], since modern web applications are no longer mere hypertex-
tual information repositories, but are complex distributed systems

* Corresponding author. Tel.: +34 926295300; fax: +34 926295354.
E-mail addresses: damefe@esdebian.org (D. Mellado), Eduardo.FdezMedina@
uclm.es (E. Fernandez-Medina), Mario.Piattini@uclm.es (M. Piattini).

0950-5849/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2010.05.007

hackers, code writers and cyber-terrorists [15].

In recent years, many public and private organizations have
altered their way of thinking about their business processes in
order to improve the quality of delivered services by achieving bet-
ter efficiency and efficacy [4]. There has been a simultaneous in-
crease in both the demand for and the complexity of the
software needed. The need to obtain both high-quality information
systems and higher productivity has led software product line
(SPL) based development to become the most successful approach
in the reuse field, since it can assist in significantly reducing both
time-to-market and development costs [10,13]. The SPL develop-
ment paradigm is based on increasing the reuse of all types of arte-
facts, thanks to the combination of coarse-grained components
with a top-down systematic approach in which software compo-
nents are integrated into a high-level structure.

D. Mellado et al. /Information and Software Technology 52 (2010) 1094-1117 1095

The complexity and extensive nature of product line develop-
ment signifies that security and requirements engineering are crit-
ical success factors in the development of a software product line.
It should consequently be subject to careful requirements analysis
and decision making, given that a weakness in security may cause
problems in all the products of a product line. Many requirements
engineering practices must also be appropriately tailored to the
specific demands of product lines [9]. The specification of require-
ments for an SPL is therefore a challenging task [48]. The specifica-
tion of security quality requirements for an SPL is even more
challenging as a result of the varying security properties required
in different products for the diversity of market segments and
the constraint of simultaneously maintaining the cost-effective
principle of the SPL paradigm.

The principle which establishes that the building of security
during the early stages of the development process is cost-effective
and also brings about more robust designs is also widely accepted
[31]. This has meant that the discipline of Security Requirements
Engineering is now considered to be an extremely important part
of the SPL development process for the achievement of secure
SPL and products. It provides techniques, methods, standards and
systematic and repeatable procedures for tackling SPL security
requirement issues throughout the SPL development lifecycle, both
to ensure the definition of security quality requirements and to
manage the variability of security properties.

Nevertheless, software engineering methodologies and the
standard proposals of SPL engineering have traditionally ignored
security requirements and security variability issues. The few re-
cent proposals which deal with security in SPLs, such as [3,16], fo-
cus mainly on the design of implementation aspects of SPL
development or include only a few security requirements activi-
ties. After analysing the most relevant current “generic” security
requirements related proposals in [44], we can conclude that none
of them are either sufficiently specific or are tailored to the SPL
development paradigm.

In this paper we propose a security requirements engineering
framework for SPL which is an evolution of our previous “generic”
security requirements engineering process (SREP) [42],. We will
provide a complete explanation of the Security Requirements Engi-
neering Process for Software Product Lines (SREPPLine). We will
also described the activities of which SREPPLine is composed,
which are formally specified with SPEM 2.0 [51] (an OMG stan-
dard). An explanation will also be provided of the Security Refer-
ence Meta Model, which assists in the management of the
variability of SPLs. A simple example will be described, which will
focus on security requirements artefacts for an e-billing reception
service product line for Spanish public administrations. This will
serve to illustrate the application of SREPPLine, the Security Refer-
ence Meta Model and SREPPLineTool (the prototype tool developed
to provide automated support to SREPPLine).

In previous works we have only outlined SREPPLine and SREP-
PLineTool respectively, along with a case study as a preliminary
validation of the application of the domain activity of SREPPLine
(PLSecDomReq) [45,47]. The SPL security variability management
was presented and briefly detailed in another previous work [43],
but without any explanation of the integration of the models pro-
posed and without the inclusion of an XML grammar. This paper, in
contrast with our previous works, will therefore provide a detailed
explanation, and the SREPPLine process will be formally specified
with the SPEM 2.0 standard [51], specifying: roles, input and out-
put artefacts, activities, tasks and steps. A definition of a grammar
in XML for the Security Reference Meta Model will also be given. By
using these standards, SREPPLine better facilitates integration with
other processes and repositories. We shall also present a frame-
work in which these components will be integrated with the aim
of providing a security requirements framework for SPL. This

framework will systematically deal with the security requirements
artefacts and their variability from the early stages of SPL develop-
ment and its products. This will facilitate SPL products’ confor-
mance with the most relevant security standards with regard to
the management of security requirements, such as ISO/IEC 27001
[26] and ISO/IEC 15408:2005 [25] (Common Criteria).

The remainder of the paper is organized as follows: Section 2
presents related work in security requirements engineering for
SPLs. In Section 3, we shall describe our proposed security require-
ments engineering framework for SPLs, along with an explanation
of the Security Reference Meta Model and SREPPLine process activ-
ities, which will be formally specified with SPEM 2.0 [51]. In Sec-
tion 4, we will show a simple example of the SREPPLine
application in order to provide a preliminary validation. Finally,
in Section 5, we shall discuss our contributions and future work.

2. Related work

There has, in recent years, been a spectacular growth in the
number of security standard and security requirements related
proposals. Several attempts have also recently been made to define
SPL architectures for security. We shall now outline those propos-
als which are particularly close in subject matter to ours and which
will then be compared to SREPPLine.

The “SPL reference architecture for security” approach of Faegri
and Hallsteinsen [16] suggests a reference architecture which
draws upon state-of-the-art techniques and practices from SPL
engineering and information security, and constitutes a decision
support framework for security architecture design in SPLs. The
authors propose a structured repository to support architectural
design with which to capture and manage knowledge related to
this.

The “Architecture reasoning for supporting SPL evolution” ap-
proach of Arciniegas et al. [3] proposes a new process to support
SPL evolution which involves architecture recovery and confor-
mance methods and a set of techniques and tools to support them.
The authors also present a case study dealing with non-functional
security requirements in distributed environments through which
to create a reference architecture. They also propose ways in which
to enhance the coverage of architectural security requirements.

In contrast to SREPPLine, the existing proposals with regard to
SPL security, despite tackling security management in SPL engi-
neering, are more orientated towards the software solution than
to security requirements. The most relevant current ‘“generic”
security requirements related proposals are those such as: security
use cases [17,19]; misuse cases [52,58,59]; UMLsec [6,27-29]; a
framework for security requirements engineering [22]; SQUARE
[1,39,40]; security requirements methods based on i" framework
[36,62]; Secure Tropos [14,20,38]; security requirements based
on intentional anti-models [33]; and SIREN [34,61]. These propos-
als are neither sufficiently specific nor are they tailored to the SPL
development paradigm, principally because they do not deal with
security requirements variability, which is an essential aspect of
the SPL development paradigm. Moreover, they do not provide a
methodological tailored approach for SPL engineering.

In contrast to SREPPLine, none of the proposals provides a sys-
tematic approach through which to manage and trace security
requirements with the aim of including security requirements var-
iability in SPL models. Furthermore, these “generic” security
requirements engineering approaches do not consider certain spe-
cific tasks and techniques which are important for the SPL develop-
ment paradigm, such as security feature identification or security
feature variability, i.e., security variation points and variant identi-
fication. SREPPLine, on the other hand, takes these tasks and tech-
niques into account, integrates them into the repository, specifies

1096

them in activities which are composed of tasks and defines them in
steps and guidelines (standards, techniques and practices). These
approaches do not manage the security requirements variability
management required for carrying out an instantiation of a new
product in the SPL. SREPPLine, however, uses the Security Refer-
ence Model implemented by a security repository to facilitate the
traceability management of all the security artefacts involved in
a product instantiation of the SPL (security features, assets, secu-
rity objectives, threats, risks and security requirements, along with
their respective variability relations). This signifies that it possible
to trace all the affected security requirements artefacts for a given
variant or variation point or vice-versa. This Security Reference
Model could also be used to link SREPPLine artefacts to the soft-
ware artefacts specified in other models, i.e., feature models, use
cases or misuse cases. Our proposal therefore provides security
variability consistency across the different SPL security artefacts.
After analyzing most of the aforementioned proposals in
[41,46], we also concluded that none of them facilitates the SPL
products security certification against the most relevant interna-
tional security standards with regard to the management of secu-

RN

D. Mellado et al. /Information and Software Technology 52 (2010) 1094-1117

rity requirements, such as, principally, ISO/IEC 15408 [25], ISO/IEC
27001 [26]. Neither do these security standards alone provide a
methodology for developing either secure systems or SPLs. There
was thus a gap in these issues (security requirements, security
standards, variability and SPL) that our proposal (SREPPLine) at-
tempts to fill. Having said this, each of these proposals makes
highly important contributions to security requirements engineer-
ing. In addition, some of their features are used as the basis for
SREPPLine.

3. Security requirements engineering framework for software
product lines

This section shows the main concepts of requirements engi-
neering in SPLs in order to provide a better comprehension of
our approach. The key components of the security requirements
engineering framework for SPLs are also shown (see Fig. 1). We
shall therefore summarize the most important characteristics of
our proposed process, SREPPLine, along with an outline of the pro-
totype tool we have developed to support it.

R R I

K PLSecAppReq !
: (Activity 2 - SREPPLINE)
APPLICATION = .
ENGINEERING A ‘ SYSTEM & APPLICATION TESTING
SYSTEM sl e SYSTEM APPLICATION | | | APPLICATION | APPLICATION
DEFINITION ANALYSIS / DESIGN ANALYSIS | . DESIGN IMPLEMENTATION
ANALYSIS |+ || 1A |)|)
‘ PRODUCT DERIVATION ACTIVITIES ‘
AN . VARIABILITY-))
TRACEABILITY =
> 55 9
] ‘ CORE ASSETS @] 'E OS =z
z Eo zWw o
4 < <0 o
o 4 = w
H w 2 - 5 CZt =
z z VARIABILITY- o8 < 5}
0 7 TRACEABILITY Lz =3 N
o w
b i SECURITY ASSETS 8= &
w x 74
z o w
=l =
5 s
% Reference Standards Application Security
8 Model (15O 27001 & Reference Model
i
N A 4
PRODUCT LINE REVERSE ENGINEERING ‘ "
(| [probuctume | - \
PRODUCT LINE DOMAIN SYSTEM DOMAIN DOMAIN
SCOPING ECONOMICAL | +|| ANALYSIS / DESIGN ANALYSIs | || DOMAINDESIGN | 1l o) epENTATION ‘
; DOMAIN TESTING ‘
DOMAIN i)
ENGINEERING - s R
PLSecDomReq 5

(Activity 1 — SREPPLINE) .

% (SREPPLineTool)

Trters s s s s er et

Fig. 1. Security requirements engineering framework for software product lines (SPLs or LPS).

D. Mellado et al. /Information and Software Technology 52 (2010) 1094-1117

3.1. Software product line requirements engineering basics

A Software product line (SPL) is a set of software-intensive sys-
tems sharing a common, managed set of features [30] which satisfy
the specific needs of a particular market segment or mission and
which is developed from a common set of core assets in a pre-
scribed way [13]. Exploiting commonalities between different sys-
tems is at the heart of Software Product Line Engineering. These
commonalities and differences are described by using the core con-
cept in Software Product Line Engineering: variability. Variability
describes the variations in both functional and non-functional fea-
tures in the product line. Features are either a commonality or a
variation. Variability management is the activity in product line
development that aims to model a product line as a whole and to

1097

customize or change specific product line members. Its importance
signifies that it can actually be seen as the key feature that distin-
guishes product line development from other approaches to soft-
ware development [55]. In common language use the term
variability refers to the ability or the tendency to change, but in
this case this change does not occur by chance but is brought about
deliberately. For example: an electric bulb can be lit or unlit, or a
software application can support different languages. Variability
in SPL is therefore variability that is modelled to enable the devel-
opment of customized applications by reusing predefined, adjust-
able artefacts. The variability of a SPL thus distinguishes different
applications of the product line. In contrast to variability, the com-
monality in SPL denotes features that are part of each application
in exactly the same form. This means that it is often possible to de-

RELATEDIO | CC CLASS |.,—| CC FAMILY |@—CC COMPONENT|—

REQUIREMENTS

| SOFTWARE VARIABILITY DEPENDENCY SECURITY VARIABILITY SECURITY
/ PRODUCT LINE P TIONAL SUB-META MODEL \ REQUIREMENT
/ CONSTRANS ’ " MANDATORY \ DECISION
| VARIATION POINT ¢ VARIANT \ MUDEL
N n VP ARTEFACT CONSTRAINS N n 3 |
B ecomz DEPENDENCY] | ARTEFACT P
| GOAL | | EATURE | | . SECURITY ARTEFACT DEPENDENC'Y/" ————— —_
n AN | _ZP /
— ~— /
H SECURITY-FEATURE = S _ -
n — —_ =
| 1
SOFTGOAL VALUE COUNTERMEASURE
| SECURITY .
| ™ ASSET-OBJECTIVE-THREAT| | | OBJECTIVE
| = ! A -DEGRADATION N
| DEPENDS | -IMPACT 2 |
i -LIKELYHOOD &
[e | -RISK I % TEST
I I |
I | |
| «uUSEs» | «bind
: | SEC-DOMAIN
| | REQUIREMENTS
| I | PACKAGE
[| I n
[| I | SECURITY
| I «bind» | SECURITY = REQUIREMENT
e SPECIFICATION
I | THEERT REQUIREMENTR
n | Zx——
I PRODUCT SII:’L «uses» I «uses» : N | I n |
! SECURITY. }—PPRETECTION|: = =l leesisinsnssteasas | | DEPENDS TSPECTREG
I TARGET PROFILE | XML
| I
|
| | SECURITY
| l‘> MISUSE CASE n E | USE CASE
| THREAT 8 |
| LEAD TO | SPECIFICATION I;: l «traces»
I o | UMLSEC
: — ATTACK TREE [, _____ 1
|
| | N
: OTHER

1N

-R—LAIEET—IO 27001 CLAUSE j&——

1 N

27001 CONTROL
OBJECTIVE

1

1

n

n

27001 CONTROL

Fig. 2. Security Reference Meta Model.

1098 D. Mellado et al. /Information and Software Technology 52 (2010) 1094-1117

cide whether a feature is a variable of the SPL or whether it is com-
mon to all software product applications, and thus adds to the
commonality.

The Software Product Line Engineering paradigm differentiates
two processes: domain engineering and application engineering
[53]. Domain engineering is the process of SPL engineering in
which commonality and variability of the product line are defined
and carried out. According to [53] the domain requirements engi-
neering sub-process encompasses all activities for eliciting and
documenting the common and variable requirements of the prod-
uct line. Application engineering is the process of SPL engineering
in which the applications of the product line are built by reusing
domain artefacts and exploiting product line variability. Product
line requirements define the products and their common and var-
iable features in the product line. Requirements that are common
to the entire family, which constitute the product line require-
ments and an important core asset, should be managed separately
from requirements that are particular to a subset of the products
(or to a single product), which must also be managed. The SPL
scope binds the products included in the product line: product line
requirements refine the scope by more precisely defining the char-
acteristics of the products in the product line. Both concepts are
closely coupled and evolve together [13].

3.2. Overview of our approach

Security Requirements Engineering Process for Software Prod-
uct Lines (SREPPLine) is an iterative and incremental process which
is an add-in of tasks that can be incorporated into and tailored to
an organization’s SPL development process model to provide it
with a security requirements engineering approach. We have de-
fined the key tasks that must be part of each SPL activity, signifying
that the order in which the steps are performed depends on the
particular process that is established in an organization. The activ-
ities and their tasks can thus be combined with existing develop-
ment methods such as RUP (Rational Unified Process), OpenUP
(Open Unified Process), or other development processes, although
in this paper we describe integration with the framework proposed
for SPL engineering by Biithne et al. in [11]. It can therefore be
termed as a scalable process since not all the tasks and steps are
required, and developers could create their own lightweight pro-
cess by selecting a subset of the steps in each task.

It is a security-feature or security-goal based process which is
driven by risk and security standards (specifically ISO/IEC 27001
and Common Criteria). It deals with security requirements and
their related artefacts from the early phases of SPL development
in a systematic and intuitive manner especially tailored to SPL
based development. It is based on the use of the latest and most
widely validated security requirements techniques, such as secu-
rity use cases [17] or misuse cases [59], along with the integration
of the Common Criteria (CC) components and ISO/IEC 27001 con-
trols into the SPL lifecycle in order to facilitate SPL product security
certification (depicted as cylinders in the centre of Fig. 1). Our pro-
posed process suggests the use of a method to carry out risk assess-
ment which conforms to ISO/IEC 13335 [23]. It specifically uses
Magerit [37], the methodology officially recognised by NATO at
the 9th NATO cyberdefense workshop in 2008 and by OECD [49],
for both SPL risk assessment and SPL products risk assessment.
The aim of SREPPLine is to minimize both knowledge of the neces-
sary security standards and security expert participation during
SPL product development. To this end, it provides a Security Refer-
ence Model (shown in Fig. 1) to facilitate security artefact reuse
and to implement the Security Reference Meta Model. This meta-
model is composed of the Security Variability Sub-Meta Model
and the Security Requirement Decision Sub-Meta Model, both of
which assist in the management of the variability and traceability

of the security requirements related artefacts of the SPL and its
products. The meta-model is the basis used by the SREPPLine tasks
to capture, represent and share knowledge about security require-
ments for SPL and help to certify them against security standards.
In essence, it is a knowledge repository with a structure to support
security requirements reasoning in SPL.

Fig. 1 shows the typical activities of both application engineer-
ing (at the top of the figure) and domain engineering (at the bot-
tom of the figure) based on the framework for SPL engineering
proposed by Biihne et al. in [11] (shown in rounded squares in
Fig. 1). The integration of the Product Line Security Domain
Requirements Engineering (PLSecDomReq) and Product Line Secu-
rity Application Requirements Engineering (PLSecAppReq) SREP-
PLine activities within common activities of domain engineering
and application engineering is also described, and this integration
is depicted in the figure with a dotted line. That is, SREPPLine activ-
ities should be integrated into the analysis activities of the domain
and application engineering processes of an organization whose
software development paradigm is based on SPL engineering. In
the centre of the figure there is an arrow denominated as SREP-
PLine which indicates the direction of our process. This direction
is the same as that of Product Line Engineering, since our proposed
process must be integrated into SPL engineering. It is not designed
to be integrated into a reverse engineering process. The reposito-
ries that manage the traceability and variability and implement
the Security Reference Model are also represented in the centre
of the figure, in which the repositories are depicted as three-
dimensional ellipses. The links between the SPL repositories and
the repositories of its derived applications are also shown. There
are at least five types of necessary repositories:

e LPS repository: This maintains the common artefacts of the
product line and the links with the artefacts of their derived
applications.

e Application repository: There is one of these types of repository
for each application derived from the Product Line. This repos-
itory registers the artefacts derived from the product line and
the application’s specific artefacts.

e LPS Security Assets repository: This manages the product line
security artefacts (assets, security objectives, threats, security
requirements, etc.) and the relations with the security artefacts
of their derived applications, the security standards and the
related artefacts of the product line (such as, for example, acces-
sibility requirements).

e Application Security Assets repository: There is one of these types
of repository for each application derived from the Product Line.
This repository manages the security artefacts derived from the
product line and the specific security artefacts of the applica-

Activity {kind = Phase}: Name of the Phase
Process: SREPPLine

Activity {kind = Iteration}: Name of the iterative Activity
TaskUse: Name of the task
ProcessPerformer {kind: primary}
RoleUse: Role Name {kind: in}
WorkDefinitionParameter {kind: in}
WorkProductUse : Artefact name
WorkDefinitionParameter {kind: out}
WorkProductUse : Artefact name {state: state}
Steps
Step: Name of the step
Guidance
Guidance {kind: type}: Name

Fig. 3. SREPPLine structure using SPEM 2.0.

D. Mellado et al. /Information and Software Technology 52 (2010) 1094-1117 1099

tion. It also manages the links with the related artefacts of the
application and the security standards elements.

e The Security Standards repository registers the elements of the
security standards (such as ISO/IEC 27001 controls or ISO/IEC
15408 components).

Finally, the management of these repositories is performed by
the prototype tool that we have developed to provide automated
support to SREPPLine, SREPPLineTool. This prototype implements
the Security Reference Meta Model by means of dynamic reposito-
ries of security artefacts, and guides us in the execution of the pro-
cess in a sequential manner. This tool thus permits us to apply the
SREPPLine process in an SPL development by providing automated
support to its activities.

3.3. Security Reference Meta Model

The existing variability management approaches, such as, for
example: [60,54,7] are focused on addressing functional require-
ments variability. In contrast, in our proposed security require-
ments engineering framework for SPL we suggest using the
Security Reference Meta Model which is focused on managing
the security requirements artefacts’ variability elicitation, manage-
ment and representation. As Fig. 2 show, our proposed meta-model
is composed of two Sub-Meta Models: the Security Variability Sub-
Meta Model and the Security Requirement Decision Sub-Meta
Model. These are complementary to each other and are repre-
sented by using UML 2.0. The meta-model is based on the Reusable
Assets Specification (RAS), adopted as an OMG standard [50] and

class SREPPLine[@Simﬁulm]J

&

Domain Requirements Engineering

&

Application Require_ments Engineering

[
A1.9: Security Requirements
Artefacts Inspection

<«<nesfing>>
<<nesting>
%4 A2 PLS?cJAppReq
A1: PLSecDomReq <<activity extension>>)
A1.1: Security Management Scoping A2 Application Security ok L na
and Security Variability Analysis Variability Management
A1.2: Security Assets Scoping " <<nest1ng>t A2.2 Application Security —
esting @ Artefacts Instantiation
A1.3J: Security Objectives Scoping @ “Qﬁgﬂng”
A m— —= 72,3 Sec-Deltas Analysis and
) <<nesting>> Application Specific Security
<estin :’;1 e g':} . Artefacts Development
4 Securt reats Scopin 3
fty = g scnestinge> @ <<nesing>>
< > '—_C)} < “<<nEsting>>] ** A2.4 Application Risk Assessment =
A1.5: Security Risks Assessment <enestings> F\? <noilis>
. b PR—
<qesting>> '—?}? A2.5 Application Security
A1.6: Security Requirements Scopin i Requirements
. PR <nesting> Negotiation and Prioritization
< @ 9 <<nesfing>>
A1.T: Security Requirements A2.6 Application Security
Hegotiation and Prioritization Requirements Specification
£
@ . @ <<nesfing=>
A1.8: Security Requirements St :
Specification A2.T Application Security
Requirements

Artefacts Inspection

Fig. 4. SREPPLine activities structure using SPEM 2.0.

1100 D. Mellado et al. /Information and Software Technology 52 (2010) 1094-1117

Table 1
SREPPLine’s most important work products.

Table 3
SREPPLine roles.

Security Those features (concept of feature taken from Kang et al.
features [30]) which describe security aspects of the system
(application or product line)
Asset Anything that has value to the organization (ISO/IEC 13335)
(23]
Security The objectives which must be achieved in order to protect
objective the organization’s business goals
Threat A potential cause of an unwanted incident, which may result

in harm to a system or organization (ISO/IEC 13335) [23]
Risk An estimate of the degree of exposure to threat to one or
more assets causing damage or prejudice to the organization
(Magerit [37])
ISO/IEC ISO/IEC standard 27001 Information technology - Security
27001 techniques - Information security management systems —
Requirements. SREPPLine integrates and uses ISO/IEC 27001
clauses, control objectives and controls

ISO/IEC ISO/IEC standard 15408 2005 Information technology -
15408 Security techniques - Evaluation criteria for IT security.
(Common Criteria v.3). SREPPLine integrates and uses
Common Criteria classes, families and components
Protection (Compatible with ISO/IEC 15408 definition) an
Profile implementation-independent statement of security needs for
a Product Line
Security (Compatible with ISO/IEC 15408 definition) an
Target implementation-dependent statement of security needs for a
specific identified product
IEEE 830 IEEE 830 1998 Recommended Practice for Software
Requirements Specifications. 1998
Sec-delta Sec-deltas occur when stakeholder security requirements
cannot be completely satisfied by security domain
requirements artefacts
Table 2

SREPPLine most important guidance.

Feature matrix [30] A technique to identify common and variable features
between products
Conceptual diagrams of threats to systems and
possible attacks to reach these threats
A UML extension to specify requirements regarding
confidentiality and integrity in analysis models in
order to develop secure systems
Magerit techniques Magerit is an open methodology for Risk Analysis and
[37] Management, developed by the Spanish Ministry of
Public Administrations and offers a framework and
guideline to Public Administration. Given its open
nature it is also used outside the Administration. It has
been structured into three books, one of which
contains the methodology, one with a catalogue of
elements; and one containing practical techniques,
which describes techniques frequently used to carry
out risk analysis
Delphi evaluation A systematic, interactive forecasting method which
[35] relies on a panel of experts who anonymously answer
questionnaires in rounds
Both a collaborative platform and a step-by-step
methodology for bringing key stakeholders together to
hammer out a set of requirements with which they
can all live
A business process modelling tool which describes the
steps involved in performing a malicious act against a
system, just as an act that the system is supposed to
perform in a use case would be described
Security use case A specialized use case, the scope of which is restricted
[18] to security issues
+SAFE [57] An extension to CMMI-DEV that covers security and
safety engineering

Attack trees [52,56]

UMLSec [27]

EasyWinWin
negotiation [21]

Misuse case [59]

also extends the orthogonal variability meta-model of Pohl et al.
proposed in [53].

We have also defined an XML grammar in order to facilitate the
formalization and standardization of the Security Reference Model.
The main objective of using XML is to facilitate integration with

Client Organization that requests a system, product,
service or product line

Final users who will use the product for their
work and who have a good knowledge of the
business in which the product will be used
This role is in charge of the task of capturing,
structuring, and accurately representing the
user’s requirements so that they can be
correctly embodied in systems which meet
these requirements

The business experts have a profound
knowledge of the product line domain and are
thus able to outline both the features of the
products of the domain and the product line
business goals and features

This role is in charge of managing the product
line and is responsible for product line final
decisions as regards cross-cutting issues, such
as commonalities and variabilites of the
product line, the realisation of new versions or
new product instantiation

This is the key role and it participates in and
leads most of the activities

This is the specialized role in security and the
main task of this role is to improve the overall
security of the development process

The role of the security architect is to design
the technical architecture that will later be
implemented in the process

This role is responsible for applying the
principles and practices of software quality
assurance throughout the software
development life cycle

Expert users

Requirements engineer

Business domain experts
(only in PLSecDomReq)

PL manager

Security requirements
engineer
Security expert

Security architect

Inspection team

Table 4
Activity 1 (PLSecDomReq) definition.

Activity {kind = Phase}: Domain Requirements Engineering
Process: SREPPLine

Activity {kind = Iteration}: First Product Line Security Domain
Requirements Engineering (PLSecDomReq)

other repositories and/or tools which might exist in an organiza-
tion, along with facilitating the extension of our proposed reposi-
tory by an organization in which SREPPLine has been adopted.
The core of this XML grammar is shown in Appendix A (from Figs.
8-12).

As was previously explained, the Security Reference Model is
composed of two Sub-Meta Models. The Security Variability Sub-
Meta Model is used to assist in the management and representa-
tion of variability and traceability of the security requirements re-
lated artefacts of the SPL and its products, along with the SPL and
its products security standards certification. The Security Require-
ment Decision Sub-Meta Model supports the elicitation of security
artefacts variability, in addition to capturing, specifying and rea-
soning about security requirements and their artefacts for the
SPL members. It also supports the development of a security
requirement protection profile! for the security features of the
SPL, along with the development of a security target? for the security
features of a product of the SPL. It is additionally helpful in the pro-

! Protection profile (PP) (compatible with ISO/IEC 15408 definition): an imple-
mentation-independent statement of security needs for a Product Line.

2 Security target (ST) (compatible with ISO/IEC 15408 definition): an implemen-
tation-dependent statement of security needs for a specific identified product.

D. Mellado et al. /Information and Software Technology 52 (2010) 1094-1117 1101

Table 5
Task A1.1 definition.

Table 6
Task A1.2 definition.

TaskUse: Al.1 - Security Management Scoping and Security Variability
Analysis
ProcessPerformer {kind: primary}

RoleUse: Product line manager {kind: in}

RoleUse: Business domain experts {kind: in}
RoleUse: Security requirements engineer {kind: in}
RoleUse: Security expert {kind: in}

RoleUse: Security architect {kind: in}

RoleUse: Inspection team {kind: in}

WorkDefinitionParameter {kind: in}

WorkProductUse: Stakeholder needs

WorkProductUse: Existing products of the domain

WorkProductUse: Business goals

WorkProductUse: Features and feature model

WorkProductUse: Organization security policy

WorkProductUse: Law and regulations

WorkProductUse: Security standards (ISO/IEC 27001 clauses and ISO/IEC
15408 classes)

WorkProductUse: Requests for additional/altered security features

WorkDefinitionParameter {kind: out}

WorkProductUse: Common and variable security features {state: initial
draft}

WorkProductUse: List of similar Protection Profiles {state: initial draft}

WorkProductUse: Security variability sub-model {state: initial draft}

WorkProductUse: Security requirement decision sub-model {state: initial
draft}

Steps

Step: Al.1.1 Analyze the requests for additional/altered security features

Step: A1.1.2 Define security goals based on stakeholders needs, business
goals, security policy and regulations

Step: Al.1.3 Determine the type of category of the product line

Step: A1.1.4 Determine the relevant ISO/IEC 27001 clauses and ISO/IEC
15408 classes

Step: A1.1.5 Identify similar product line Protection Profile

Step: A1.1.6 Select the security features from product line existing
features

Step: A1.1.7 Identify new security features

Step: A1.1.8 Analyze the security features commonality

Step: A1.1.9 Analyze the security features variability

Step: A1.1.10 Relate each security variable artefacts (security features and
security standards) to the corresponding variants or variation points in
the security reference model

Step: Al1.1.11 Model security variability

Step: A1.1.12 Inspect security features & variability model

Guidance

Guidance {kind: Practice}: Questionnaire

Guidance {kind: Practice}: Interviews

Guidance {kind: Practice}: Meetings

Guidance {kind: Practice}: Application features matrix

Guidance {kind: Practice}: Hierarchical security features

Guidance {kind: Checklist}: Organization policy, laws and standards

cess of determining the most appropriate security requirements
artefacts and security standards.

This Variability Sub-Meta Model relates the defined variability
to other software development models such as feature models,
use case or misuse case or security use case models, design models
and test models. It thus provides a cross-cutting view of security
requirements variability in all security development artefacts and
assists in maintaining the different views of variable security
requirements artefacts consistent.

In Fig. 2, we have used the elements variant and variation point
to manage the variability of SPL engineering. A variation point (VP)
represents a variation subject and defines what can vary in an SPL
(“what varies?”). A variant (V) represents the variation object and
defines a concrete type of variation (“how does it vary?”). A variant
can be related to one or more variation points (multiplicity 1---n)
and a variation point associates at least one variability dependency
to one variant (multiplicity 1---n). A variant can also constrain
(<<require>> or <<exclude>>) variants and a variant can be con-

TaskUse: A1.2 Security Assets Scoping
ProcessPerformer {kind: primary}

RoleUse: Product line manager {kind: in}

RoleUse: Business domain experts {kind: in}
RoleUse: Security requirements engineer {kind: in}
RoleUse: Security expert {kind: in}

RoleUse: Inspection team {kind: in}

WorkDefinitionParameter {kind: in}

WorkProductUse: Family assets

WorkProductUse: Common and variable security features
WorkProductUse: Security reference model
WorkProductUse: Organization inventories
WorkProductUse: Business processes

WorkProductUse: Scenarios

WorkProductUse: Personal data law

WorkDefinitionParameter {kind: out}

WorkProductUse: Common and variable security assets {state: initial
draft}

WorkProductUse: Graph of assets dependences {state: initial draft}

WorkProductUse: Security requirement decision model {state: initial
draft}

Steps

Step: A1.2.1 Identify and select security assets

Step: A1.2.2 Identify common and variable security assets

Step: A1.2.3 Determine security assumptions

Step: A1.2.4 Categorize security assets

Step: A1.2.5 Identify security assets dependencies

Step: A1.2.6 Represent security assets variability and dependencies
Step: A1.2.7 Inspect security assets graph & variability model

Guidance

Guidance {kind: Checklist}: Catalogue of type of security assets according
to Magerit

Guidance {kind: Practice}: Attack trees

Guidance {kind: Practice}: Graph of dependencies of assets

Guidance {kind: Practice}: Meetings

Guidance {kind: Practice}: Application requirements matrix

strained by several variants (multiplicity 0---n at both ends). For
example, in Fig. 5, the variant ‘Internet web’ for an e-billing recep-
tion system of a Spanish Public Administration ‘requires’ the vari-
ant ‘https’ (owing to a legal requirement of the case study). In order
to relate the variability defined in the Variability Sub-Meta Model
to the software artefacts specified in other models, this meta-mod-
el contains the element security artefact, which is a specialization of
an artefact. The assignation of (an) artefact(s) to a variation point
makes it possible to represent the common behaviour of several
variants. However, an artefact can but does not have to be related
to one or several variation points and vice-versa (multiplicity O- - -n
both sides). By assigning (an) artefact(s) to a variant, the artefact
becomes variable. The artefact which is not related to any variant
represents a commonality for the SPL (multiplicity 0---n). More-
over, a variant must be related to at least one artefact (multiplicity
1---n). For example, it is possible to trace all the affected security
requirements artefacts for a given variant or variation point or
vice-versa. This is shown in Fig. 5, in which all the security require-
ments artefacts affected by the variation point “user authenticity”
can be traced. A security artefact must also be categorized. The cat-
egory attribute (compulsory for every artefact) assists in avoiding
semantic problems and in the reuse of security artefacts, since
these are standardized and in SREPPLine they can only be modified
by the product line manager. This is a key element for the Security
Requirement Decision Sub-Meta Model because it guides us
through the categories, thus permitting the systematic identifica-
tion of the security requirements artefacts.

As is shown in Fig. 2, the starting points of the Security Require-
ment Decision Sub-Meta Model are the goals/softgoals and feature
models and their correlations, which permit the functional and

1102 D. Mellado et al. /Information and Software Technology 52 (2010) 1094-1117

Table 7
Task A1.3 definition.

Table 8
Task A1.4 definition.

TaskUse: A1.3 Security Objectives Scoping
ProcessPerformer {kind: primary}

RoleUse: Business domain experts {kind: in}
RoleUse: Security requirements engineer {kind: in}
RoleUse: Security expert {kind: in}

RoleUse: Inspection team {kind: in}

WorkDefinitionParameter {kind: in}

WorkProductUse: Common and variable security assets
WorkProductUse: Graph of assets dependences
WorkProductUse: Security reference model

WorkDefinitionParameter {kind: out}

WorkProductUse: Common and variable security assets valuated {state:
initial draft}

WorkProductUse: Security reference model {state: initial draft}

Steps

Step: A1.3.1 Select security dimensions according to Magerit

Step: A1.3.2 Identify the dimension in which each asset is valuable

Step: A1.3.3 Value the security assets for each security dimension
according to the cost to the organization of the destruction of each
asset

Step: A1.3.4 Propagate values through the dependencies graph

Step: A1.3.5 Determine security objectives rationale

Step: A1.3.6 Inspect security objectives valuation

Guidance

Guidance {kind: Checklist}: Type of security dimensions according to
Magerit

Guidance {kind: Checklist}: Scale to value assets according to Magerit
valuation criteria

Guidance {kind: Practice}: Attack trees

Guidance {kind: Practice}: Graph of dependencies of assets

Guidance {kind: Practice}: Delphi evaluation

Guidance {kind: Practice}: Meetings

non-functional requirements to be considered. This is owing to the
fact that goal models express high-level intentions regarding the
system, which are refined into more concrete requirements, and
feature models express the high-level requirements of a system
architecture, signifying that both goal models and feature models
can be used to express the intentions of a system [53]. The interest
in using softgoals and features lies in the fact that, if the traceabil-
ity links are carefully established, they allow us to decide what
security features are needed to maintain the security aligned with
the goals of the SPL or product and what the optimal set of security
features of a determined priority is in the context of the different
scenarios of the SPL that provides the rationale for the selection.
This therefore supposes a rise in the abstraction level of the vari-
ants selection process, and the selection is made in the require-
ments level rather than in the design level.

The selected category/ies of each security artefact ‘Xi’ might al-
low this Sub-Meta Model to propose (a) category(ies) of the secu-
rity artefacts related to the Xi security artefacts categories, with
‘Xi’ starting from the selected categories of the security features.
This Sub-Meta Model could therefore propose (a) category(ies) of
assets related to these categories of security features. The same oc-
curs with threats. That is to say, in the selected category/ies of the
asset, along with its/their related security objectives category/ies,
this Sub-Meta Model could propose threats or categories of threats
related to the assets and security objectives categories in order to
assist in the identification and valuation of common and optional
threats. This is also true of the security requirements. The selected
category/ies of threats could allow this Sub-Meta Model could pro-
pose a category or categories of security requirements related to
the category/ies which could mitigate the impact or reduce the
likelihood of these threats. This mechanism facilitates both the
elicitation of the common and optional security requirements of

TaskUse: Al .4 Security Threats Scoping
ProcessPerformer {kind: primary}

RoleUse: Business domain experts {kind: in}
RoleUse: Security requirements engineer {kind: in}
RoleUse: Security expert {kind: in}

RoleUse: Security architect {kind: in}

RoleUse: Inspection team {kind: in}

WorkDefinitionParameter {kind: in}

WorkProductUse: Common and variable security assets valuated

WorkProductUse: Security reference model

WorkProductUse: List of public vulnerabilities

WorkProductUse: Security [failure | incident reports or logs of existing
products

WorkProductUse: Security standards (ISO/IEC 27001 control objectives and
ISO/IEC 15408 families)

WorkProductUse: Organization security policy and architecture

WorkProductUse: Product line scenario

WorkDefinitionParameter {kind: out}

WorkProductUse: Common and variable threats {state: initial draft}
WorkProductUse: Vulnerabilities report {state: initial draft}
WorkProductUse: Existing safeguards {state: initial draft}
WorkProductUse: Safeguards evaluation report {state: initial draft}
WorkProductUse: Security reference model {state: initial draft}

Steps

Step: A1.4.1 Identify and select security vulnerabilities

Step: A1.4.2 Identify type of attackers

Step: A1.4.3 Identify type of attacks

Step: A1.4.4 Determine the relevant ISO/IEC 27001 control objectives and
ISO/IEC 15408 families

Step: A1.4.5 Identify common threats for each asset

Step: A1.4.6 Identify variable threats for each asset

Step: A1.4.7 Categorize threats

Step: A1.4.8 Relate each security variable artefacts (misuse cases, attack
trees, security standards) to the corresponding variants or variation
points in the security reference model

Step: A1.4.9 Model and specify threats

Step: A1.4.10 Identify existing safeguards

Step: A1.4.11 Verify threats and assets against security features and the
security reference model

Guidance

Guidance {kind: Checklist}: Catalogue of type of security threats according
to Magerit

Guidance {kind: Checklist}: Scale to value threats according to Magerit
valuation criteria

Guidance {kind: Template}: Attack trees

Guidance {kind: Template}: Misuse cases

Guidance {kind: Template}: Aspect XML

Guidance {kind: Practice}: Delphi evaluation

Guidance {kind: Practice}: Meetings

Guidance {kind: Practice}: Interviews

the SPL and the security requirements instantiation in the
products.

Finally, in Fig. 2, we have represented the security standards
variability by integrating the Common Criteria (CC) elements
and the ISO/IEC 27001 controls. These security standard elements
must be related to the categories of the security artefact defined
in the organization: security feature, threat and security require-
ment. The aim of this is to assist in the SPL or SPL products’ cer-
tification with regard to these standards and facilitating their
reasoning. For example, the CC class FIA (identification, authenti-
cation and binding) can be related to the “authentication” of
security feature elements category, as occurs in the example rep-
resented in Fig. 5.

This Sub-Meta Model facilitates the reasoning of security
requirements related artefacts and the security standards’ confor-
mance. It supports the capturing, specifying and reasoning of secu-
rity requirements for both SPLs and SPL members thanks to its
trace-links, as will be shown in practice in Section 5 (Fig. 5).

D. Mellado et al. /Information and Software Technology 52 (2010) 1094-1117 1103

Table 9
Task A1.5 definition.

Table 10
Task A1.6 definition.

TaskUse: A1.5 Security Risk Assessment
ProcessPerformer {kind: primary}

RoleUse: Business domain experts {kind: in}
RoleUse: Security expert {kind: in}
RoleUse: Inspection team {kind: in}

WorkDefinitionParameter {kind: in}

WorkProductUse: Common and variable security assets valuated
WorkProductUse: Common and variable threats
WorkProductUse: Security reference model

WorkProductUse: Organization security policy and architecture
WorkProductUse: Existing safeguards

WorkDefinitionParameter {kind: out}

WorkProductUse: Potential risk assessment report {state: initial draft}

WorkProductUse: Residual risk assessment report {state: initial draft}

WorkProductUse: Deficiencies or weaknesses report of safeguards {state:
initial draft}

WorkProductUse: Security reference model {state: initial draft}

Steps

Step: A1.5.1 Determine the degree of degradation of each threat for each
asset in each security objective

Step: A1.5.2 Determine the probable frequency of occurrence (likelihood)
of each threat for each asset in each security objective

Step: A1.5.3 Calculate the impact of each threat for each asset in each
security objective

Step: A1.5.4 Calculate the potential risk of each threat for each asset in
each security objective

Step: A1.5.5 Relate each risk value to the corresponding variants or
variation points in the security reference model

Step: A1.5.6 Propagate values through the dependencies graph

Step: A1.5.7 Evaluate effectiveness of existing safeguards

Step: A1.5.8 Calculate the residual risk of each threat for each asset in each
security objective taking into account the value of the assets and the
valuation of threats and the effectiveness of the safeguards currently
deployed

Step: A1.5.9 Inspect risk assessment and validate risk acceptance

Guidance

Guidance {kind: Checklist}: Scale to value risks, degradation and
frequency of occurrence according to Magerit valuation criteria

Guidance {kind: Guideline}: Algorithmic analysis according to Magerit
techniques

Guidance {kind: Practice}: Delphi evaluation

Guidance {kind: Practice}: Meetings

Guidance {kind: Practice}: Interviews

Guidance {kind: Practice}: Agreements, contracts and applicable
legislation

3.4. SREPPLine process

This section describes our process, which is based on the Soft-
ware Process Engineering Meta-model Specification (SPEM) stan-
dard [51] from the Object Management Group (OMG). SPEM is a
process meta-model which is used to describe a concrete software
development process or a family of related software development
process. The SPEM specification is structured as a UML profile, and
provides a complete MOF-based meta-model [51]. This meta-pro-
cess modelling is a type of metamodelling used in software engi-
neering to support the effort of creating flexible process models.
The purpose of using process models, and in this case SPEM, is to
document and communicate the SREPPLine process, to enhance
its reuse and to facilitate its integration into other processes and
frameworks. Thus, by using SPEM in the SREPPLine specification
we promote the increment of process engineers’ productivity and
the quality of the global models they produce as a result of the
integration of SREPPLine into the process map of their organization
or company.

In accordance with SPEM, SREPPLine is described by using the
structure shown in Fig. 3. Each activity specifies: WorkProduct as
both input and output respectively; the roles that perform or par-

TaskUse: A1.6 Security Requirements Scoping
ProcessPerformer {kind: primary}

RoleUse: Business domain experts {kind: in}
RoleUse: Expert users {kind: in}

RoleUse: Security requirements engineer {kind: in}
RoleUse: Requirements engineer {kind: in}
RoleUse: Security expert {kind: in}

RoleUse: Security architect {kind: in}

RoleUse: Product line manager {kind: in}

RoleUse: Inspection team {kind: in}

WorkDefinitionParameter {kind: in}

WorkProductUse: Common and variable security threats modelled

WorkProductUse: Security reference model

WorkProductUse: Potential and residual risks

WorkProductUse: Security standards (ISO/IEC 27001 controls and ISO/IEC
15408 components)

WorkProductUse: Product line scenario and context

WorkProductUse: Catalogue of product line functional and non-functional
requirements

WorkDefinitionParameter {kind: out}

WorkProductUse: Common and variable security functional and assurance
requirements {state: initial draft}

WorkProductUse: Security reference model {state: initial draft}

Steps

Step: A1.6.1 Identify and select similar security requirements packages

Step: A1.6.2 Determine the relevant ISO/IEC 27001 controls and ISO/ IEC
15408 components

Step: A1.6.3 Identify common security requirements that mitigate the
threats at the level with regard to the risk assessment

Step: A1.6.4 Identify variable security requirements that mitigate the
threats at the level with regard to the risk assessment

Step: A1.6.5 Determine internal variability of elicited security
requirements

Step: A1.6.6 Categorize security requirements

Step: A1.6.7 Determine security requirements dependences with other
functional and non-functional requirements

Step: A1.6.8 Model security requirements

Step: A1.6.9 Relate each security variable artefacts (security use cases,
security standards, Protection Profile) to the corresponding variants or
variation points in the security reference model

Step: A1.6.10 Validate traceability links between security requirements,
threats, security objectives and assets

Step: A1.6.11 Verify security requirements against security features
satisfaction

Guidance

Guidance {kind: Template}: Security use cases
Guidance {kind: Template}: Aspect XML
Guidance {kind: Template}: UMLSec

Guidance {kind: Practice}: Meetings

Guidance {kind: Practice}: Interviews

ticipate in this RoleUse activity; the collection of Steps defined for a
Task Use that represents all the work that should be carried out to
achieve the overall development goal of the Activity; and the Guid-
ance that specifies the practices, techniques or standards to con-
sider when performing the Task Use.

SREPPLine is composed of two activities: the Product Line Secu-
rity Domain Requirements Engineering (PLSecDomReq) activity
(A1) and the Product Line Security Application Requirements Engi-
neering (PLSecAppReq) activity (A2). The structure of these activi-
ties is depicted in Fig. 4 through the use of a SPEM 2.0 diagram. As
the figure shows, it is an iterative and incremental process, which
is an add-in of tasks grouped into two activities that can be incor-
porated into and tailored to an organization’s SPL development
process model. No particular order for the steps is specified in
the figure because the order in which the steps are performed de-
pends on the particular process that is established in an organiza-
tion. The activities and their tasks can thus be combined with
existing development methods. In addition, not all the tasks and

1104 D. Mellado et al. /Information and Software Technology 52 (2010) 1094-1117

Table 11
Task A1.7 definition.

Table 12
Task A1.8 definition.

TaskUse: A1.7 Security Requirements Negotiation and Prioritization
ProcessPerformer {kind: primary}

RoleUse: Business domain experts {kind: in}
RoleUse: Expert users {kind: in}

RoleUse: Security requirements engineer {kind: in}
RoleUse: Requirements engineer {kind: in}
RoleUse: Security expert {kind: in}

RoleUse: Security architect {kind: in}

RoleUse: Product line manager {kind: in}

RoleUse: Inspection team {kind: in}

WorkDefinitionParameter {kind: in}

WorkProductUse: Common and variable security requirements modelled

WorkProductUse: Security reference model

WorkProductUse: Potential and residual risks

WorkProductUse: Product line roadmap

WorkProductUse: Product line goals

WorkProductUse: Catalogue of product line functional and non-functional
requirements

WorkDefinitionParameter {kind: out}

WorkProductUse: Common and variable security functional and assurance
requirements prioritized {state: initial draft}

WorkProductUse: Security reference model {state: initial draft}

WorkProductUse: Security requirements roadmap {state: initial draft}

Steps

Step: A1.7.1 Prioritize security requirements regarding risks

Step: A1.7.2 Select relevant security requirements according to the risk
level acceptance for this phase-iteration

Step: A1.7.3 Identify conflicts between the relevant security requirements

Step: A1.7.4 Identify the relevant security requirements conflicts with
other functional or non-functional requirements

Step: A1.7.5 Value the cost of implementing the relevant security
requirements

Step: A1.7.6 Reach trade-offs

Step: Al1.7.7 Determine final security requirements commonalities

Step: A1.7.8 Determine the final priority and roadmap place for each
security requirement

Step: A1.7.9 Verify inexistence of security requirements prioritization
conflicts for this phase-iteration

Guidance

Guidance {kind: Template}: Security use cases

Guidance {kind: Template}: Aspect XML

Guidance {kind: Template}: UMLSec

Guidance {kind: Guideline}: Delphi evaluation

Guidance {kind: Guideline}: EasyWinWin negotiation]
Guidance {kind: Guideline}: Grouping prioritization
Guidance {kind: Practice}: Cost-benefit vs risk analysis
Guidance {kind: Practice}: Hierarchical requirements representation
Guidance {kind: Practice}: Meetings

Guidance {kind: Practice}: Interviews

Guidance {kind: Practice}: Application requirements matrix

steps are required, and developers could create their own light-
weight process by selecting a subset of the steps in each task.
The following sections explain the most important characteris-
tics of SREPPLine activities. SREPPLine activities are an add-in of
tasks but not all the steps in each task are necessary, thus enabling
developers to create their own lightweight process by selecting a
subset of the steps in each task in order to adapt the process to
the size of the project and the organization. In this section, we pro-
vide a detailed description of the two activities that we have con-
sidered in our process using SPEM 2.0. We define the tasks, roles,
steps, work products and guidance of each activity, which will be
characterised according to the discipline to which they pertain.

3.4.1. SREPPLine artefacts: roles, work products and guidance

In this section, we provide an overview of the main artefacts
(roles, work products and guidance) that SREPPLine uses in its
activities.

TaskUse: A1.8 Security Requirements Specification
ProcessPerformer {kind: primary}

RoleUse: Security requirements engineer {kind: in}
RoleUse: Security architect {kind: in}
RoleUse: Inspection team {kind: in}

WorkDefinitionParameter {kind: in}
WorkProductUse: Common and variable security requirements modelled
WorkProductUse: Security reference model

WorkDefinitionParameter {kind: out}

WorkProductUse: Security requirements specification {state: initial draft}

WorkProductUse: Security reference model {state: initial draft}

WorkProductUse: Security requirements rationale {state: initial draft}

WorkProductUse: Product line Protection Profile {state: initial draft}

WorkProductUse: Security metrics description {state: initial draft}

WorkProductUse: Security requirements acceptance test description
{state: initial draft}

WorkProductUse: Safeguards and countermeasures description {state:
initial draft}

Steps

Step: A1.8.1 Specify security requirements and their variability

Step: A1.8.2 Define and specify the product line Protection Profile

Step: A1.8.3 Relate each security requirement related artefact to the
Protection Profile

Step: A1.8.4 Determine security requirements rationale

Step: A1.8.5 Describe safeguards and countermeasures

Step: A1.8.6 Describe security requirements test acceptance

Step: A1.8.7 Describe security requirements metrics

Step: A1.8.8 Validate formality of specifications and traceability links

Step: A1.8.9 Validate Protection Profile specification against ISO/IEC 15446

Guidance

Guidance {kind: Template}: Security use cases
Guidance {kind: Template}: Aspect XML
Guidance {kind: Template}: UMLSec

Guidance {kind: Practice}: Meetings

Guidance {kind: Practice}: Interviews

The guidance (techniques, practices and standards) and work
products that SREPPLine uses are common techniques or practices
and artefacts of software engineering, SPL engineering or security
engineering. Those which are most important and specific are
briefly described in Tables 1 and 2.

The roles defined in SREPPLine, and briefly explained in Table 3,
supplement the roles already present in software engineering, the
difference being that these roles particularly focus on security in
SPL and also require special training in some cases. Although one
physical person can fulfil multiple roles, such as those concerning
security, an acknowledged practice is the separation of duties. This
means that the security roles should still be separated from the
software engineering roles (the minimum number of physical peo-
ple will therefore be two), although this may of course be difficult
in small organizations.

3.4.2. Activity PLSecDomReq

This sub-section provides details of the formal specification of
the SREPPLine PLSecDomReq activity which uses SPEM [51] (Tables
4-14). Its most important characteristics will also be explained.

The main goals of this activity are: the development of common
and variable security requirements of the SPL which conform to
IEEE 830:1998; their precise documentation in an SPL Protection
Profile (PP) adapted document by following the standard ISO/IEC
15446 [24]; and the development of their common and variable re-
lated security requirements artefacts.

3.4.2.1. PLSecDomReq tasks. Task A1.1: Security Management Scoping
and Security Variability Analysis. In this task the product line man-
ager analyses the requests for additional/altered security features

D. Mellado et al. /Information and Software Technology 52 (2010) 1094-1117 1105

Table 13
Task A1.9 definition.

TaskUse: A1.9 Security Requirements Artefacts Inspection
ProcessPerformer {kind: primary}

RoleUse: Inspection team {kind: in}
RoleUse: Business domain experts {kind: in}
RoleUse: Product line manager {kind: in}

WorkDefinitionParameter {kind: in}
WorkProductUse: Security reference model

WorkDefinitionParameter {kind: out}

WorkProductUse: Residual risk assessment report {state: initial draft}

WorkProductUse: Deficiencies or weaknesses report {state: initial draft}

WorkProductUse: Security standards (ISO/IEC 27001 and ISO/IEC 15408)
conformance report {state: initial draft}

WorkProductUse: Security process maturity level report (according to
+SAFE) {state: initial draft}

WorkProductUse: Security requirements specification conformance to
IEEE 830 report {state: initial draft}

Steps

Step: A1.9.1 Verify security requirements satisfy security features at the
appropriate assurance level

Step: A1.9.2 Calculate the residual risks taking into account the
effectiveness of the selected security requirements and the safeguards
currently deployed

Step: A1.9.3 Validate residual risk acceptance

Step: A1.9.4 Verify traceability links consistency

Step: A1.9.5 Verify security variability links consistency

Step: A1.9.6 Verify security standards (ISO/IEC 27001 and ISO/IEC 15408)
conformance

Step: A1.9.7 Verify requirements specification against IEEE 830

Step: A1.9.8 Verify Protection Profile compliance to Common Criteria (ISO/
IEC 15408)

Guidance

Guidance {kind: Checklist}: ISO/IEC 27001

Guidance {kind: Checklist}: ISO/IEC 15408

Guidance {kind: Checklist}: IEEE 830:1998 checklist

Guidance {kind: Checklist}: Enterprise Assurance Level (EAL) of the
Common Criteria (ISO/IEC 15408)

Guidance {kind: Practice}: Walkthroughs

Guidance {kind: Practice}: Meetings

Guidance {kind: Practice}: Interviews

Table 14
Second and Next Iterations of PLSecDomReq

Activity (kind: Iteration): Second Product Line Security Domain
Requirements Engineering (PLSecDomReq)
TaskUse...
Similar to First Product Line Security Domain Requirements Engineering
(PLSecDomReq) iteration:
m reuse and accumulate existing WorkProductUse assets as input to
activities
m change “initial draft” output WorkProductUse states with ‘“revised
draft”

of the SPL. The security goals are defined based on stakeholders’
needs, the organization’s business goals and security policy, and
regulations (laws or internal regulations). The common and vari-
able security features are also identified from the feature model re-
ceived as an input of this task, and/or new security features are
identified simultaneously. They are then all categorized, based on
the relevant categories of the Security Reference Model, or new
categories are defined if the security features do not match with
the existing categories. Examples of these categories are: privacy,
access control, etc. The existing similar Protection Profiles in the
repository are then identified along with the ISO/IEC 15408 classes
and ISO/IEC 27001 clauses. The Security Reference Model of the SPL
is next developed and produced as an output of the task in order to
specify the variabilities and commonalities and the traceability
links of the security features and their related security artefacts.

Task A1.2: Security Assets Scoping. This task identifies the com-
mon and variable security assets for each security feature and for
the environment, and the dependences between them. The aim
of this task is to identify particular components to be developed
for reuse, common and variable assets and the dependences be-
tween them, and a tree or graph of security assets dependencies
is therefore defined. The security assumptions are also set and
the stakeholders must reach an agreement regarding the common
and optional assets.

Task A1.3: Security Objectives Scoping. The security objectives are
the objectives which must be achieved in order to protect the orga-
nization’s business goals. The security objective categories man-
aged by the meta-model are first selected according to the risk
management methodology that SREPPLine is based on (that is,
Magerit [37]). The security objective categories managed by the
meta-model can therefore only be the following (): integrity (1),
confidentiality (C), availability (D), authenticity of service users
(A_S), authenticity of data origin (A_D), accountability of service use
(T_S) and accountability of data access (T_D). In accordance with
Magerit, all the possible security objectives are grouped in seven
dimensions, which are the similar term for SREPPLine security
objectives categories. This signifies that each security objective
must be categorized with one of these categories, since SREPPLine
is based on Magerit. The security objectives for each security asset
are then stated, and they are also correctly categorized with one of
the former security objective categories. The security assets valua-
tion against their related security objectives is next performed, to-
gether with a commonality and variability analysis. Each asset
could have different related security objectives, which are associ-
ated with a security objective category (or security dimensions in
Magerit [37] terminology). The corresponding value is assigned to
this category which is agreed by the stakeholders (following a
standardized scale from 0 to 10 in accordance with the Magerit risk
methodology [37]). This step is performed by carrying out inter-
views with the different stakeholders, and the Delphi evaluation
method [35] and the value scale proposed in Magerit are also used.

The valuation of each asset is given in each security objective
category and is propagated through the dependency tree of assets,
and it is therefore only necessary to explicitly value the higher as-
sets in the dependency tree. For example, let us assume that the
asset “electronic bill”, which is related to the security objective
“confidentiality of communications” is categorized with ‘confiden-
tiality’, and that this category is assigned a value of 7, and this asset
depends on the asset “web-server”, which implies that the “web-
server” value for the security objectives categorized with ‘confi-
dentiality’ will be at least 7 (the propagated value). That is, the
accumulated value over an asset is defined as the highest value
among it and any of those above. In practice, the result of this step
is partially shown in Fig. 6, in which the first number of each cell is
the value of the assets. If the numbers are between brackets they
are propagated values.

Task A1.4: Security Threats Scoping. The assets are exposed to
threats which may prevent the security objective from being
achieved. Not all threats affect all assets or all their security objec-
tives, so those which are common and optional must be identified
in this task. There is also a certain relationship between the cate-
gory of the asset and what might happen to it. The Security Refer-
ence Model could, therefore, use the selected asset category/ies,
along with its/their related security objective category/ies to pro-
pose threats or threat categories related to these asset and security
objective categories in order to assist in the identification and eval-
uation of common and optional threats. For example, the “Entry of
incorrect information” and “Information alteration” threat catego-
ries can be related to the “data” or “information” asset categories
and the “integrity” security objective category. The relevant I1SO/
IEC 27001 control objectives and ISO/IEC 15408 families related

1106

Reception
System

E-Bill

D. Mellado et al. /Information and Software Technology 52 (2010) 1094-1117

reception

2.
. N]

Internet web

™ << requires >>

|<< reqqures >>! << requires >,Pf AN

|
: |
I |
: | -/ Secure / \\ \\ |
! I 7 /Submissions N \\ |
| L N
l. -7 "-.

m

SIMIME https

<< requires >>

o —————

E-Bill Format

[1 N] T 5L

=

Excel | p EDI | n PDF signed | n PDF | E

:‘

‘Authenticity

L111

R15 - Usability Reguirement: Y,
Applications shall provide i
W3C-WAI double “A” level | [
conformance

Other requirements...

Requirements Document

SECURITY
REQUIREMENT:
ARTEFACTS
<< trace >> User Authenticity
» Scenario

<Threale;n:=>- -

Cross site

scripting Authentlcate J

Fragment of a Security Requirement specification
Fragmento de especificacién XML de requisito de sequridad
<security requirement>
<security requirement_id> SR5 </security requirement_id>
<name="eBill user authenticity”>
<description="Ensure authenticity of the user of eBill reception system”>
<security-use-case template> SRT-2-2-1-1
</security-use-case template>
<security requirement categories> SRC-2-2-authenticity
</security requirementcategories>
<dependences>
<Common Criteria component> FIA_UAU.1.1 — user authentication
</Common Criteria component>
<|SO-IEC27001 control> A.11.1.1 — access control palicy
</ISO-IEC27001 control>

(Rest of dependences depicted in the picture by <<trace>>)

</dependences>
</security requirement>

<|nclude>>
ubmi
e-bill by
web

<<Threp

saL
injection

ten>>

Misuser Submit

e-bill by

email

Misuse

cases =
Threats

{\ e-signature
~ —
Use cases
-
| Security
| usecases |
|

Fig. 5. Example: Part of the eBill-PL Security Reference Model and security artefacts.

Table 15
Activity 1 (PLSecAppReq) definition.

Activity {kind = Phase}: Application Requirements Engineering
Process: SREPPLine

Activity {kind = Iteration}: First Product Line Security Application
Requirements Engineering (PLSecAppReq)

to the SPL threats are also set. The potential vulnerabilities in pub-
lic domain sources are revised and the identification of the attack
tree [52] associated with the business pattern or SPL domain and
the threat modelling and specification are carried out (misuse
cases [59] or aspect-oriented XML [32]). Finally, the validation of
security goals against threats and assets and their Security Refer-
ence Model is carried out.

Task A1.5: Security Risks Assessment. This task consists of the fol-
lowing major steps in order to achieve 100% risk acceptance:
assessing whether the threats are relevant according to the secu-
rity level specified by the security objectives; estimating the secu-
rity risks based on the relevant threats, their likelihood and their

potential negative impacts, depending on the variation points. To
do this, we propose the use of Magerit [37], which conforms to
ISO/IEC 13335 (GMITS) [23], and which is a methodology officially
recognised by NATO at the 9th NATO cyberdefense workshop in
2008 and by OECD [49]. The impact of each threat is calculated
by considering the values of the assets of each security objective
along with the degradation caused by the threat, which must be
estimated by the security risk expert within a range from 0% to
100% (Impact = round(accumulated value x degradation)). The im-
pact and the likelihood of occurrence of the threat, which must also
be estimated by the security risk expert, are also considered in or-
der to calculate the risk according to a formula defined in Magerit
(R(Vi,Fj) = Vi+j—n)). The risk is then classified in a range of 0-5
according to the Magerit [37] scale. All these data are stored in the
Security Requirement Decision Sub-Meta Model and are presented
in a table. An example of this table is shown in Fig. 6, in which high
values indicate high impacts and risks. SREPPLineTool is also capa-
ble of automatically calculating impacts and risks by introducing
the degradation and likelihood of occurrence, as can be seen in
the example shown in Fig. 7).

D. Mellado et al. /Information and Software Technology 52 (2010) 1094-1117 1107

Table 16
Task A2.1 definition.

Table 17
Task A2.2 definition.

TaskUse: A2.1 Application Security Variability Management
ProcessPerformer {kind: primary}

RoleUse: Product line manager {kind: in}

RoleUse: Expert users {kind: in}

RoleUse: Security requirements engineer {kind: in}
RoleUse: Security expert {kind: in}

RoleUse: Security architect {kind: in}

RoleUse: Inspection team {kind: in}

WorkDefinitionParameter {kind: in}

WorkProductUse: Stakeholders of the application needs

WorkProductUse: Application specific environment, policies and
regulations

WorkProductUse: Security standards (ISO/IEC 27001 clauses and ISO/IEC
15408 classes)

WorkProductUse: Product line security reference model

WorkDefinitionParameter {kind: out}

WorkProductUse: Instantiated application security features {state: initial
draft}

WorkProductUse: Application’s stakeholder security features that do not
correspond to domain security features {state: initial draft}

WorkProductUse: Application security variability sub- model {state: initial
draft}

WorkProductUse: Application security requirement decision sub-model
{state: initial draft}

Steps

Step: A2.1.1 Define security goals of the application based on stakeholders
needs, business goals, security policy and regulations

Step: A2.1.2 Communicate the relevant variation points, variants and their
dependencies of the domain security features to the stakeholders of
the application

Step: A2.1.3 Analyze the common security artefacts (security features,
assets, security objectives, threats and security requirements) of the
product line

Step: A2.1.4 Determine the relevant ISO/IEC 27001 clauses and ISO/ IEC
15408 classes for the application

Step: A2.1.5 Identify similar product Security Targets among the
applications of the product line

Step: A2.1.6 Analyze the security features variability (Analyze the variants
of each variation point)

Step: A2.1.7 Select the domain security features variants that satisfy the
security features of the stakeholders of the application

Step: A2.1.8 Trace each application security feature variant to the
corresponding domain variants or variation points in the security
reference model of the product line

Step: A2.1.9 Model the security reference model of the application

Step: A2.1.10 Collect the application’s stakeholder security features that
do not correspond to domain security features

Step: A2.1.11 Inspect the selected security features for the application and
the application security reference model

Guidance

Guidance {kind: Practice}: Questionnaire

Guidance {kind: Practice}: Interviews

Guidance {kind: Practice}: Meetings

Guidance {kind: Practice}: Hierarchical security features

Guidance {kind: Checklist}: Organization policy, laws and standards

Task A1.6: Security Requirements Scoping. The Security Reference
Model is able to propose a category or categories of security
requirements related to all the selected threat category/ies which
could mitigate the impact or reduce the likelihood of these threats.
This mechanism facilitates both the elicitation of the common and
optional security requirements of the SPL and the security require-
ments instantiation in the products. The misuse cases and their re-
lated threats are therefore first analyzed in this task, and the
appropriate CC (ISO/IEC 15408) security functional requirements
and ISO/IEC 27001 controls for the threats of the product line are
then selected. The identification of the common security require-
ments according to the elicited requirements and obtained through
the previously performed risk analysis are next carried out. This
leads to the definition of the variable security requirements and

TaskUse: A2.2 Application Security Artefacts Instantiation
ProcessPerformer {kind: primary}

RoleUse: Product line manager {kind: in}

RoleUse: Expert users {kind: in}

RoleUse: Security requirements engineer {kind: in}
RoleUse: Security expert {kind: in}

RoleUse: Security architect {kind: in}

RoleUse: Inspection team {kind: in}

WorkDefinitionParameter {kind: in}
WorkProductUse: Selected - instantiated security features
WorkProductUse: Application security reference model

WorkDefinitionParameter {kind: out}

WorkProductUse: Common and instantiated assets {state: initial draft}

WorkProductUse: Common and instantiated security objectives {state:
initial draft}

WorkProductUse: Common and instantiated threats {state: initial draft}

WorkProductUse: Common and instantiated security requirements {state:
initial draft}

WorkProductUse: Common and instantiated security metrics description
{state: initial draft}

WorkProductUse: Common and instantiated security requirements
acceptance test description {state: initial draft}

WorkProductUse: Common and instantiated safeguards and
countermeasures description {state: initial draft}

WorkProductUse: Application security reference model {state: initial
draft}

Steps

Step: A2.2.1 Analyze the assets variability

Step: A2.2.2 Select the domain assets variants that satisfy the security
features of the stakeholders of the application

Step: A2.2.3 Analyze the security objectives variability

Step: A2.2.4 Select the appropriate variable security objectives from the
product line for the application

Step: A2.2.5 Analyze the threats variability

Step: A2.2.6 Select the appropriate variable threats from the product line
for the application

Step: A2.2.7 Analyze the security requirements variability

Step: A2.2.8 Select the appropriate variable security requirements from
the product line for the application

Step: A2.2.9 Trace each application security feature variant to the
corresponding domain variants or variation points in the security
reference model of the product line

Step: A2.2.10 Model the security reference model of the application

Step: A2.2.11 Inspect the common and selected security artefacts and the
application security reference model

Guidance

Guidance {kind: Template}: Attack trees
Guidance {kind: Template}: Misuse cases
Guidance {kind: Template}: Aspect XML
Guidance {kind: Template}: Security use cases
Guidance {kind: Template}: Aspect XML
Guidance {kind: Template}: UMLSec

Guidance {kind: Practice}: Meetings

Guidance {kind: Practice}: Interviews

variability dependencies between them, while a CC security
requirement is simultaneously defined which permits CC opera-
tions (iteration, assignment, selection or refinement). Finally the
security requirements are modelled with security use cases [18]
or UMLSec [28] and are traced with their associated security test
and security measure/metric. Examples of security use cases are
shown in Fig. 5, and are depicted with a dotted line.

Task A1.7: Security Requirements Negotiation and Prioritization.
This task comprises the following major steps: identification of
the interdependences with other functional and non-functional
requirements and trade-offs in the security requirements decision
model; and balancing the risk with the economical impact of
implementing countermeasures. Various techniques, such as Easy-
WinWin negotiation [21] and grouping prioritization [8] are used.

1108 D. Mellado et al. /Information and Software Technology 52 (2010) 1094-1117

Table 18
Task A2.3 definition.

Table 19
Task A2.4 definition.

TaskUse: A2.3 Sec-Deltas Analysis and Application Specific Security
Artefacts Development

ProcessPerformer {kind: primary}

RoleUse: Product line manager {kind: in}

RoleUse: Expert users {kind: in}

RoleUse: Security requirements engineer {kind: in}
RoleUse: Security expert {kind: in}

RoleUse: Security architect {kind: in}

RoleUse: Inspection team {kind: in}

WorkDefinitionParameter {kind: in}

WorkProductUse: Selected - instantiated security artefacts

WorkProductUse: Application security reference model

WorkProductUse: Application’s stakeholder security features that do not
correspond to domain security features

WorkDefinitionParameter {kind: out}

WorkProductUse: Sec-deltas and their impact {state: initial draft}

WorkProductUse: Application specific security artefacts {state: initial
draft}

WorkProductUse: Application security reference model {state: initial
draft}

Steps

Step: A2.3.1 Analyze sec-deltas

Step: A2.3.2 Analyze the impact on the security reference model (necessity
of adding new security variants or variation points for each security
artefact)

Step: A2.3.3 Analyze the impact of the security reference model sec- deltas
on the corresponding security artefacts (Changes in variation points,
variants, dependencies on associated variants)

Step: A2.3.4 Identify and develop application specific security artefacts.

Inherited steps from:

= TaskUse: A1.2 Security Assets Scoping

= TaskUse: A1.3 Security Objectives Scoping

= TaskUse: A1.4 Security Threats Scoping

= TaskUse: A1.5 Security Risk Assessment

= TaskUse: A1.6 Security Requirements Scoping

Step: A2.3.5 Update the security reference model of the application and
their traceability and variability links

Step: A2.3.6 Inspect the sec-deltas and the application specific security
artefacts and the application security reference model

Guidance

Guidance {kind: Practice}: Meetings
Guidance {kind: Practice}: Interviews
Guidance {kind: Practice}: Questionnaire
Guidance used in the inherited steps

Task A1.8: Security Requirements Specification. This task consists
of security requirements modelling and security requirements
specification and the Product Line Protection Profile specification
according to ISOJIEC 15446 [24]. In order to do this we use the
technique of security use cases and their parametrical templates,
which are traced to the security variability model. Fig. 5 shows
an example of part of a security requirement specification with
the XML aspect requirements specification technique, and with
its traces to the security variability model.

Task A1.9: Security Requirements Artefacts Inspection. This task
comprises the following major steps: (i) it is first necessary to ver-
ify whether the security requirements satisfy the stakeholders’
security needs and the SPL security goals, and also whether a risk
assessment outlined to obtain the residual risks has been per-
formed; (ii) we verify whether the security requirements conform
to ISO/IEC 27001 control objectives, to CC (ISO/IEC 15408) assur-
ance requirements and to the IEEE 830-1998 standard since,
according to this standard, a quality requirement must be correct,
unambiguous, complete, consistent, ranked by importance and/or
stability, verifiable, modifiable, and traceable; (iii) we also propose
the use of the CMMI-DEV+SAFE [57] in order to assist in the eval-
uation of the product line security engineering process in the Do-
main Testing sub-process; and (iv) we verify the fulfilment of the
previously approved EAL and the CC evaluation.

TaskUse: A2.4 Application Risk Assessment
ProcessPerformer {kind: primary}

RoleUse: Expert users {kind: in}
RoleUse: Security expert {kind: in}
RoleUse: Inspection team {kind: in}

WorkDefinitionParameter {kind: in}

WorkProductUse: Application security assets valuated
WorkProductUse: Application threats

WorkProductUse: Application security reference model
WorkProductUse: Organization security policy and architecture
WorkProductUse: Existing safeguards

WorkDefinitionParameter {kind: out}

WorkProductUse: Potential risk assessment report {state: initial draft}

WorkProductUse: Residual risk assessment report {state: initial draft}

WorkProductUse: Sec-deltas risk assessment report {state: initial draft}

WorkProductUse: Deficiencies or weaknesses report of safeguards {state:
initial draft}

WorkProductUse: Security reference model {state: initial draft}

Steps

= Inherited steps from: TaskUse: A1.5 Security risk assessment

Step: A2.4.1 Determine the degree of degradation of each threat for each
asset in each security objective

Step: A2.4.2 Determine the probable frequency of occurrence (likelihood)
of each threat for each asset in each security objective

Step: A2.4.3 Calculate the impact of each threat for each asset in each
security objective

Step: A2.4.4 Calculate the potential risk of each threat for each asset in
each security objective

Step: A2.4.5 Relate each risk value to the corresponding variants or
variation points in the security reference model

Step: A2.4.6 Propagate values through the dependencies graph

Step: A2.4.7 Evaluate effectiveness of existing safeguards

Step: A2.4.8 Calculate the residual risk of each threat for each asset in each
security objective taking into account the value of the assets and the
valuation of threats and the effectiveness of the safeguards currently
deployed

Step: A2.4.9 Inspect risk 1ent and validate risk acceptance

Guidance

Guidance {kind: Checklist}: Scale to value risks, degradation and
frequency of occurrence according to Magerit valuation criteria

Guidance {kind: Guideline}: Algorithmic analysis according to Magerit
techniques

Guidance {kind: Practice}: Delphi evaluation

Guidance {kind: Practice}: Meetings

Guidance {kind: Practice}: Interviews

Guidance {kind: Practice}: Agreements, contracts and applicable
legislation

Subsequent iterations. The subsequent iterations will be speci-
fied in a similar manner to that of the aforementioned activities
specification, as is shown in Table 14.

3.4.3. Activity PLSecAppReq

This section provides details of the formal specification of the
SREPPLine PLSecAppReq activity using SPEM [51] (Tables 12-20).
Its most important characteristics will also be explained.

The main goals of this sub-process are: elicitation and docu-
mentation of the security requirements and their related security
artefacts in the SPL application; ensuring that they conform to IEEE
830:1998 and gathering them together in a Security Targets (ST)
adapted document by following the ISO/IEC 15446 [24] standard,
reusing the security domain artefacts and requirements as far as
possible.

3.4.3.1. PLSecAppReq tasks. The PLSecAppReq task A2.1 is that of
“Application Security Variability Management”. In this task stake-
holders are informed of the commonalities and variabilities of
the security features of the SPL, since the goal of this task is both

D. Mellado et al. /Information and Software Technology 52 (2010) 1094-1117 1109

Table 20
Task A2.5 definition.

Table 21
Task A2.6 definition.

TaskUse: A2.5 Application Security Requirements Negotiation and
Prioritization

ProcessPerformer {kind: primary}

RoleUse: Expert users {kind: in}

RoleUse: Security requirements engineer {kind: in}
RoleUse: Requirements engineer {kind: in}
RoleUse: Security expert {kind: in}

RoleUse: Security architect {kind: in}

RoleUse: Product line manager {kind: in}

RoleUse: Inspection team {kind: in}

WorkDefinitionParameter {kind: in}

WorkProductUse: Application security requirements modelled

WorkProductUse: Application security reference model

WorkProductUse: Potential and residual risks

WorkProductUse: Application roadmap

WorkProductUse: Application goals

WorkProductUse: Application functional and non-functional
requirements

WorkDefinitionParameter {kind: out}

WorkProductUse: Application security functional and assurance
requirements prioritized {state: initial draft}

WorkProductUse: Application security reference model {state: initial
draft}

WorkProductUse: Application security requirements roadmap {state:
initial draft}

WorkProductUse: Request for additional | altered security domain
artefacts in the product line {state: initial draft}

Steps

Step: A2.5.1 Analyze realisation effort of each variability model delta and
their respective security requirements related artefacts deltas

Step: A2.5.2 Prioritize security requirements regarding risks

Step: A2.5.3 Select relevant security requirements according to the risk
level acceptance for this phase-iteration

Step: A2.5.4 Identify conflicts between the relevant security requirements

Step: A2.5.5 Identify conflicts about the deltas realisation effort in the
application team development or in product line team development

Step: A2.5.6 Identify the relevant security requirements conflicts with
other functional or non-functional requirements

Step: A2.5.7 Value the cost and effort of implementing the relevant
security requirements

Step: A2.5.8 Reach trade-offs regarding the relevant security
requirements and realisation effort

Step: A2.5.9 Determine final security requirements artefacts deltas
realisation effort decision (realised, partial realisation, stakeholders
adapts requirement, removed stakeholder requirement) and the team
development (application team or product line team)

Step: A2.5.10 Determine the final priority and roadmap place for each
security requirement

Step: A2.5.11 Verify inexistence of security requirements prioritization
conflicts for this phase-iteration

Guidance

Guidance {kind: Template}: Security use cases

Guidance {kind: Template}: Aspect XML

Guidance {kind: Template}: UMLSec

Guidance {kind: Guideline}: Delphi evaluation

Guidance {kind: Guideline}: EasyWinWin negotiation

Guidance {kind: Guideline}: Grouping prioritization

Guidance {kind: Practice}: Cost/effort-benefit vs. risk analysis

Guidance {kind: Practice}: Hierarchical requirements representation

Guidance {kind: Practice}: Meetings

Guidance {kind: Practice}: Interviews

Guidance {kind: Practice}: Matrix of sec-deltas categories (new variant,
new variation point, adapt dependencies) vs adaptation effort
categories (no, moderate, high, too high)

to make the stakeholders aware of the security goals and features
of the SPL and to elicit application security goals and features. The
Security Requirements Decision Model and the Security Variability
Model enable the security requirements engineer to communicate
the relevant security related variation points, security related vari-
ants and their dependences to stakeholders. The variability model’s
traceability links to security domain artefacts also enable the secu-

TaskUse: A2.6 Application Security Requirements Specification
ProcessPerformer {kind: primary}

RoleUse: Security requirements engineer {kind: in}
RoleUse: Security architect {kind: in}
RoleUse: Inspection team {kind: in}

WorkDefinitionParameter {kind: in}
WorkProductUse: Application security requirements modelled
WorkProductUse: Application security reference model

WorkDefinitionParameter {kind: out}

WorkProductUse: Security requirements specification {state: initial draft}

WorkProductUse: Application security reference model {state: initial
draft}

WorkProductUse: Security requirements rationale {state: initial draft}

WorkProductUse: Application Security Target {state: initial draft}

WorkProductUse: Security metrics description {state: initial draft}

WorkProductUse: Security requirements acceptance test description
{state: initial draft}

WorkProductUse: Safeguards and countermeasures description {state:
initial draft}

Steps

Step: A2.6.1 Specify security requirements

Step: A2.6.2 Specify application security requirements artefacts that
correspond to security domain requirements artefacts including their
traces

Step: A2.6.3 Specify the application variability model with the selected
variants

Step: A2.6.4 Specify the application variability model deltas including the
traces to the original variability model elements of the product line

Step: A2.6.5 Specify the traces between the security requirements and the
variants selected for the application

Step: A2.6.6 Specify the traces of the risks and realisation costs to the sec-
deltas to sec-deltas decisions traceability

Step: A2.6.7 Define and specify the application Security Target

Step: A2.6.8 Relate each security requirement related artefact to the
Security Target

Step: A2.6.9 Determine security requirements rationale

Step: A2.6.10 Describe safeguards and countermeasures

Step: A2.6.11 Describe security requirements test acceptance

Step: A2.6.12 Describe security requirements metrics

Step: A2.6.13 Validate formality of specifications and verify traceability
links and variability links

Step: A2.6.14 Validate Security Target specification against ISO/IEC 15446

Guidance

Guidance {kind: Template}: Security use cases
Guidance {kind: Template}: Aspect XML
Guidance {kind: Template}: UMLSec

Guidance {kind: Practice}: Meetings

Guidance {kind: Practice}: Interviews

rity requirements engineer to describe the particularities of a par-
ticular security related variant. Once the stakeholders have
informed the security requirements engineer of their security goals
and of the features necessary for the application (or product), the
result of this task is a set of domain security goals and features
of the SPL, which may not completely fulfil the stakeholders’ secu-
rity goals for the application.

In task A2.2 (“Application Security Artefacts Instantiation”) appli-
cation security artefacts from the set of domain security features
obtained in the previous task are instantiated. The appropriate
security artefacts, i.e., the security variants, for the specific applica-
tion (product) that will as far as possible satisfy the application
security goals are selected from the Security Requirements Deci-
sion Model and the Security Variability Model. The result of this
task is a set of security requirements and their related artefacts,
which may not completely fulfil the stakeholders’ application
requirements.

In task A2.3 “Sec-Deltas Analysis and Application Specific Security
Artefacts Development” the sec-deltas analysis is performed. The
sec-deltas occur when stakeholder security requirements cannot

1110 D. Mellado et al. /Information and Software Technology 52 (2010) 1094-1117

Table 22
Task A2.7 definition.

TaskUse: A2.7 Application Security Requirements Artefacts Inspection
ProcessPerformer {kind: primary}

RoleUse: Inspection team {kind: in}
RoleUse: Expert users {kind: in}
RoleUse: Product line manager {kind: in}

WorkDefinitionParameter {kind: in}
WorkProductUse: Application security reference model

WorkDefinitionParameter {kind: out}

WorkProductUse: Residual risk assessment report {state: initial draft}

WorkProductUse: Deficiencies or weaknesses report {state: initial draft}

WorkProductUse: Security standards (ISO/IEC 27001 and ISO/IEC
15408)conformance report {state: initial draft}

WorkProductUse: Security process maturity level report (according to
+SAFE) {state: initial draft}

WorkProductUse: Security requirements specification conformance to
IEEE 830 report {state: initial draft}

Steps

Step: A2.7.1 Verify security requirements satisfy security features at the
appropriate assurance level

Step: A2.7.2 Calculate the residual risks taking into account the
effectiveness of the selected security requirements and the safeguards
currently deployed

Step: A2.7.3 Validate residual risk acceptance

Step: A2.7.4 Verify traceability links consistency

Step: A2.7.5 Verify security variability links consistency

Step: A2.7.6 Verify security standards (ISO/IEC 27001 and ISO/IEC 15408)
conformance

Step: A2.7.7 Verify requirements specification against IEEE 830

Step: A2.7.8 Verify Security Target compliance to Common Criteria (ISO/
1EC 15408)

Step: A2.7.9 Analyze the submission of the requests of adding [altered
security artefacts in the product line

Guidance

Guidance {kind: Checklist}: ISO/IEC 27001

Guidance {kind: Checklist}: ISO/IEC 15408

Guidance {kind: Checklist}: IEEE 830:1998 checklist

Guidance {kind: Checklist}: Enterprise Assurance Level (EAL) of the
Common Criteria (ISO/IEC 15408)

Guidance {kind: Practice}: Walkthroughs

Guidance {kind: Practice}: Meetings

Guidance {kind: Practice}: Interviews

Table 23
Second and Next Iterations of PLSecAppReq.

Activity (kind: Iteration): Second Product Line Security Application
Requirements Engineering (PLSecAppReq)
TaskUse...
Similar to First Product Line Security Application Requirements
Engineering (PLSecAppReq) iteration:
m reuse and accumulate existing WorkProductUse assets as input to
activities
m change <<initial draft>> output WorkProductUse states with <<revised
draft>>

be completely satisfied by security domain requirements artefacts.
Sec-deltas to the security domain variability model resulting from
stakeholders’ security features/goals are analyzed during the sec-
deltas analysis. Next, the impact of the security variability model
sec-deltas on the corresponding security artefacts is analyzed.
The result of this analysis is the security application variability
model, along with the security requirements artefacts deltas which
are developed immediately afterwards. Finally, these sec-deltas are
communicated to the security risk expert who estimates the risks
involved in carrying out the security requirements deltas or other-
wise (task A2.4 “Application Risk Assessment”).

The “Application Security Requirements Negotiation and Prioritiza-
tion” task (task A2.5 of PLSecAppReq). After the application risk

assessment of the sec-deltas has been performed, its results are
communicated to the security architect and to the security require-
ments engineer who estimate the realisation effort based on the
sec-deltas and their associated risks. The stakeholders then use this
estimation to decide whether or not the security requirements del-
tas should be carried out and which security standard the applica-
tion should fulfil. The application security requirements and the
corresponding security requirements artefacts and security appli-
cation variability model are defined as a result of this task.

In the “Application Security Requirements Specification” task (task
A2.6 of PLSecAppReq) the application security artefacts, the sec-
deltas and the traces between application security artefacts and
the corresponding domain security artefacts are specified and doc-
umented. The security application variability model and the trace-
ability links of the application security artefacts to the application-
specific variability model are also documented. The estimated risk
and realisation costs are even related to the sec-deltas to ensure
that decisions regarding sec-deltas are traceable.

Finally, in task A2.7 (“Application Security Requirements Inspec-
tion”), the same points listed in the PLSecDomReq task A1.9 (Secu-
rity Requirements Artefacts Inspection) are verified along with the
security requirements artefacts variability consistency between
the application and domain artefacts. The product line manager
also evaluates the Sec-Deltas in order to decide which security fea-
tures, security requirements, in addition to their related security
artefacts (assets, security objectives, threats, countermeasures,
etc.), and their traceability and variability links should be part of
the product line domain artefacts.(See Tables 21 and 22).

Subsequent iterations. The subsequent iterations will be speci-
fied in a similar manner to that of the aforementioned activities
specification, as is shown in Table 23.

4. Case study: Applying SREPPLine

In this section we shall illustrate the application of SREPPLine,
the Security Reference Meta Model and SREPPLineTool applicabil-
ity to security requirements artefacts management in SPL engi-
neering with an e-billing reception service product line for
Spanish public administrations (eBill-PL). This SPL may have sev-
eral different configurations for various public institutions within
Spanish Public Administration. It has a common set of system func-
tionalities that forms the deliverable core, and a variable set of con-
figurable parameters and non-functional requirements. eBill-PL (e-
billing reception service product line for Spanish public adminis-
trations) is therefore an SPL whose members vary through system
configuration and online business services and yet retain the same
core functionalities.

This example concentrates on the results obtained from the
application of PLSecAppReq (SREPPLine task) to application engi-
neering in order to develop an e-billing reception service platform
within the official website of a Spanish Public Administration from
the e-billing reception service product line for Spanish public
administrations (named eBill-PL). It is focused on the security fea-
tures of the e-billing reception/submission service of the e-billing
platform. It was necessary to simplify and summarize this example
(basically the output and input artefacts generated in each task
have been omitted or briefly/partially described) in order to facili-
tate the illustration of points of the SREPPLine process in this
paper.

The eBill-PL provides the variability as represented by the vari-
ability model in Fig. 5. It offers different variants (V), which in this
example are variation points (VP), for the different public function-
alities. These are the business services offered by the e-billing
reception service product line to companies and citizens, which
could be selected by the application stakeholder. During PLSecApp-

D. Mellado et al./Information and Software Technology 52 (2010) 1094-1117 1111

[BS] Business Services
[&) [BS_emnail] e-mail Reception | 5. 705 5: 4 7:1003; 7; 5 B 1003 6: 5
[A] [BS_Gov]Intranet Gov Reception |5 603 4; 4 71002 7.5 B:10034:6:5
[A] [BS_Inet] Web Reception 5:60%:4: 4 007 7:5 B;100%:E:5
[BD] Business Data
[&) [O_FD]Financial data [B]; 90%; 5; 5| 5: 505 4: 4 | 7:700%; 7: 5 |(7]: 1005 7; 5| 6; 100%<; 6; 3 |[6]; 1003%; 6: 3|5; 00 5 3
[A] [D_Conf] Company Confidential Data |[5]; 9054 5; 5|5 60%%; 4; 4 | 7;100%; 7: 5| [7]: 100%; 7; 5|6; 100%%; 6; 3 |[6]; 100%. &; 3|5; 1007 5; 3
[4) [D_eBill] eBilllAtach [5); 9054, 5; 5| 5: 502<; 4; 4 | 7:100%; 7, B([7] 100%; 7; 5|6; 1003<; &; 3 |[6]; 00%<; 6; 3| 5; 1000 5 3
(T) Manipulation of configl 01 | B0 4:2 | W03:2:2 | S0%:6:2 | 00374 | 003:6:3 | 100%:6:3 | 003453
[T] Mazquerading of uger { 100 W00 75
[T] Modification of data 20 A0 4: 5
[T] Eavesdropping 10 50364
[T) Unauthorised access | 100 | 70e4:5:5 10%:2:2 | 50%:E: 5 R0 E: B
[1S] Internal Services
[A] [I=_Auth] Login Service [B]: 70%2; 5; 4| [5]: 50%; 4: 5| [7]: 503 B; B|[7]: 1007 7: 5|[6]: 100%; 6: K[6): 00; 6: 5| [5]; 1007 5:; 4
[&) [I1S_Virtual Office] Internet Portal [B]; 7024; 5; 4|(5]; 5024; 4; B|[7); 50; B; B{[7]: 100%:; 7; 5 [[5]: 100%4; &; H[&]; 100%; 6; B{[5] 100%; 5; 4
[A) [1S_Irtranet] Intranet for gov institution) [5); 7054: 5: 4 [[5]; 5034; 4: 5| [7); 5034: 6: 5| [7]: 100%4; 7: 5 |[5]: 10052; 6; S[&]; 10034; 6: 5| [5]; 10054:5; 4

Fig. 6. Part of the risk assessment of the eBill-PL.

{® SREPPLine Tool iy = 5 o W =%
PR e

PPII-CRM_SPL

49

Index Asset_id SecurityObjective_id Asset Value threat id Likelihood Y93 |mpact Risk
0 AS_12_Password_Data_Val=3 S0_8_Confidentiality (C) 35_Manipulation of confi... 2
AS_12_Password_Data_Val=3 S0_8 _Confidentiality (C) 36_Masquerading of use..]
S0_9_Configentiality (C) 37_Misuse
12| S0_9_Confidentiality (C) 38_Re-routing of messag..
_12_Password_Data_Val=3 S0_8_Confidentiality (C) 38_Unauthorized access
12_Password_Data_Val=3 S50_9_Confidentiality (C) 40_Repudiation
12_Password_Data_Val=8 S0_9_Confidentiality (C) 41_Denial of Service
1
1

3_ldentity Number Data_Val=6 | SO_9_Confidentiality (C) 35_Manipulation of confi..
3_|dentity Number Data_Val=6 |SO_8 Confidentiality (C) 36_Masquerading of use..

ppucalonpwns ro_jeplons egen

Fig. 7. Table 8 of SREPPLineTool: Risk Assessment.

1112 D. Mellado et al. /Information and Software Technology 52 (2010) 1094-1117

Req task A2.1 (“Application Security Variability Management”), both
the Security Requirements Decision Model and the Security Vari-
ability Model had enabled the security requirements engineer to
communicate the relevant security related variations points (VP),
security related variants and their dependences (security artefacts,
security standards and other functional and non-functional
requirements) to the stakeholders. The stakeholders informed the
security requirements engineer of their security goals and of the
features necessary for the application (or product). The result of
this task was a set of domain security goals and features of the
SPL which did not completely fulfil the stakeholders’ security goals
for the application.

In this example we selected the following security features:
user authenticity and secure submissions. As is shown in Fig. 5, dif-
ferent authenticity methods are selectable from the eBill-PL for the
‘user authenticity’ variation point. It offers the following security
variants: ‘password’ and ‘electronic certificate’. Four security vari-
ants can be selected for the ‘secure submissions’ variation point:
‘http’, ‘SSL’, ‘https’ and ‘S/MIME’.

In task A2.2 of PLSecAppReq (“Application Security Artefacts
Instantiation”), application security artefacts from the set of do-
main security features obtained in the previous task were instanti-
ated. The appropriate security artefacts, i.e., the security variants,
for the specific application (product) which would as far as possi-
ble satisfy the application goals and softgoals were selected from
the Security Requirements Decision Sub-Model and the Security
Variability Sub-Model. These had already been instantiated from
the respective previously explained meta-models. The result of this
task was a set of security requirements and their related artefacts
which did not completely fulfil the stakeholders’ application
requirements. In this example, at the ‘secure submissions’ VP we
selected the ‘https’ security variant because the stakeholders had
selected the ‘Internet web’ variant and owing to the security links
(or traceability links) established in the Security Requirements
Decision Sub-Model of the e-billing reception service product line.
At the ‘user authenticity’ VP we selected the ‘e-certificate’ security
variant because the stakeholders had selected the ‘email’ and
‘Internet web’ feature for the e-billing reception service of the
Institution.

In task A2.3 “Sec-Deltas Analysis and Application Specific Security
Artefacts Development” the sec-deltas analysis was performed. The
sec-deltas occur when stakeholder security requirements cannot
be completely satisfied by security domain requirements artefacts.
Sec-deltas to the security domain variability model resulting from
stakeholders’ security features were analyzed during the sec-deltas
analysis. The particular stakeholders’ needs for the e-billing recep-
tion service of the Institution made it necessary to add one more
variant to the ‘E-Bill Reception’ variation point regarding the recep-
tion of e-bills by email (‘email’ variant). This type of request neces-
sitated a different kind of secure submission mechanism which is
not among the variants available in the eBill-PL. We therefore iden-
tified one sec-delta (depicted as a discontinued line in Fig. 5) since
the SPL did not provide any security features to ensure secure
emails submission. We then added one more security variant for
the ‘Secure submissions’ to the application variability model, as
is shown in Fig. 5. This variant was: ‘S/MIME'". The impact of the
security variability model sec-deltas on the corresponding security
artefacts was then analyzed. The results of this analysis were the
security application variability sub-model (partially shown in
Fig. 5) along with the security requirements artefact deltas (assets,
threats, etc.), which were developed and then correctly
documented.

Finally, these sec-deltas were communicated to the security risk
expert who estimated the risks of carrying out or not carrying out
the security requirements deltas (task A2.4 “Application Risk Assess-

ment”) as shown in Fig. 6. For example, the estimated security risk
of email authenticity for not carrying out the security variant ‘S/
MIME’ was ‘high’ (risk of 5 on a scale of 0-5) (named [BS_email]
in Fig. 6). The first number of each cell in the table is the value of
the assets. The second number of each cell is the degradation value
of the assets caused by the threat expressed as a percentage. The
third value is the accumulated impact on the assets, and the last
value is the accumulated risk to the assets, according to the
Magerit method. SREPPLineTool is additionally able to automati-
cally calculate impacts and risks by introducing the degradation
and likelihood of occurrence (an example of this is shown in Fig. 7).

The “Application Security Requirements Negotiation and Prioritiza-
tion” task (task A2.5 of PLSecAppReq). After the application risk
assessment of the sec-deltas was performed, the results were com-
municated to the security architect and to the security require-
ments engineer who estimated the realisation effort based on the
sec-deltas and their associated risks. The stakeholders used this
estimation to decide whether or not the security requirements del-
tas should be carried out and which security standard the applica-
tion should fulfil. In this example we performed a slight
economical analysis by balancing the risk with the economical im-
pact of implementing countermeasures. We thereby reached an
agreement with the stakeholders with regard to taking into ac-
count those security requirements associated with those threats
that implied high or very high risk (risk of 4 or 5) whatever the
conflicts with other requirements were. However, for the security
requirements with a risk which was lower than high (that is, from
3 to 1, medium to low) we had to make trade-offs, mainly with
other non-functional requirements, and particularly with regard
to performance and interface accessibility. As Fig. 5 shows, if the
‘Internet web’ feature is selected, as occurs in this example, the
e-bill service has to fulfil the WAI, Web Accessibility Initiative, le-
vel ‘AA’. The application security requirements and the corre-
sponding security requirements artefacts and security application
variability sub-model were defined as a result of this task.

In the “Application Security Requirements Specification” task (task
A2.6 of PLSecAppReq) the application security artefacts, the sec-
deltas and the traces between application security artefacts and
the corresponding domain security artefacts were formally speci-
fied and documented. The security application variability model
and the traceability links of the application security artefacts to
the application-specific variability model were also documented,
such as the security requirement specification in XML (according
to the grammar specified in Appendix A) shown in Fig. 5. The esti-
mated risk and realisation costs were even related to the sec-deltas
in order to ensure that decisions regarding sec-deltas were
traceable.

Finally, in task A2.7 (“Application Security Requirements Inspec-
tion”) the security requirements artefacts variability consistency
between the application and domain artefacts of the e-billing
reception service product line was verified. We also verified
whether the security requirements satisfied the stakeholders’
security needs and application security goals, and whether the
security requirements conformed to ISO/IEC 27001 control objec-
tives, to Common Criteria assurance requirements and to the IEEE
830-1998 standard. In addition, the product line manager decided
to accept the suggestions for additional and altered security fea-
tures made by the security requirements engineer. This signified
that the security feature ‘S/MIME’ was included in the eBill-PL as
an additional variant of the “Secure submissions” variation point
along with the associated security requirements and their related
security requirements artefacts (assets, threats, etc.) and their var-
iability links.

Finally, among the most important lessons learnt from the case
study presented above we can highlight the following:

D. Mellado et al. /Information and Software Technology 52 (2010) 1094-1117 1113

e Tool support is critical for the practical application of this pro-
cess to large-scale software systems owing to the number of
artefacts handled and the complexity of the traceability rela-
tions and the variability model.

o We must improve the graphical interface of SREPPLineTool for
the security variability definition to make this key task more
intuitive for security requirements engineers who are not
experts in SPL engineering. Moreover, integration with other
tools of the SPL development paradigm is essential if an appro-
priate traceability of the security requirements artefacts and an
appropriate implementation of the security requirements engi-
neering are to exist in an organization.

o The following benefits have been obtained by the organization
in which the case study was carried out: (1) it has managed
to normalize a systematic and specific process for the manage-
ment of security requirements in SPL which conforms to ISO/IEC
15408 and ISO/IEC 27001. (2) A security core assets repository
has been created whose artefacts will be reused for the develop-
ment of the products of the SPL and could also be reused for the
development of future SPLs in the organization.

e We are now aware of SREPPLine’s complexity and realise that it
could be perfectly well applied in large companies or adminis-
trations. However, it needs to be adapted if it is to be applied
in small and medium sized companies, because around three
people are required to manage the process correctly.

e We are now aware that SREPPLine reduces the effort of the
security requirements engineering phase in the development
of more products in the same product line by around 50%. Fur-
thermore, it ensures SPL certification against ISO/IEC 15408 and
ISO/IEC 27001 with regards to security requirements issues, and
it also reduces the effort of preparing ISO/IEC 15408 and ISO/IEC
27001 certification by around 30%.

5. Conclusions

Security requirements issues are extremely important in SPLs
because a weakness in security can cause problems in all the prod-
ucts of an SPL. Although several attempts have been made to fill
the gap between requirements engineering and SPL requirements
engineering, no systematic approach with which to define security
quality requirements and to manage their variability and their re-
lated security artefacts to the models of an SPL is available.

The contribution of this work is that of providing a systematic
approach for the management of the security requirements and
their variability from the early stages of product line development.
The purpose of this is to facilitate the conformance of SPL products
to the most relevant security standards with regard to the manage-
ment of security requirements, such as ISO/IEC 27001 and ISO/IEC
15408 (Common Criteria). Our proposal defines an iterative, incre-
mental and customizable process based on a Security Reference
Meta Model driven by security standards in order to assist in SPL
security requirements definition and to facilitate product security
certification. This meta-model also assists in the management of
the variability and traceability of the security requirements related
artefacts and supports the capturing, specifying of and reasoning
about security requirements and their artefacts. Our proposal con-
sequently permits security variants to be selected in the require-
ments level rather than in the design level. It also provides a
cross-cutting view of the security variability in all security devel-
opment artefacts and assists in maintaining consistency in the dif-
ferent views of variable security requirements artefacts. Therefore,
SREPPLine together with the Security Reference Meta Model is a
particularly suitable approach for SPL in which security is a key is-
sue. This is owing to the broader impact of the existence or non-
existence of specific security features in all SPL members, and the
level of management of variable security features required for

the diversity of market segments. Our approach is also scalable
thanks to the fact that SREPPLine is an add-in of tasks. Since not
all the steps of each task are required, developers could create their
own lightweight process by selecting a subset of the steps of each
task in order to adapt the process to the size of the project and the
organization.

In contrast with our previous works, in this paper a detailed
explanation is provided, and the SREPPLine process is formally
specified with SPEM 2.0 [51], specifying: roles, input & output arte-
facts, activities, tasks & steps. We also define a grammar in XML for
the Security Reference Meta Model. By using these standards SREP-
PLine better facilitates integration with other processes and repos-
itories. Furthermore, we present a framework in which these
components will be integrated with the aim of providing a holistic
security requirements framework for the development of secure
SPLs.

Finally, in the future we plan to work to facilitate the use of
other risk assessment methods which conform to ISO/IEC 27005
in SREPPLine, such as OCTAVE [2]. We shall extend our proposed
process to other phases of product line development. We shall also
develop a version of SREPPLine which has been customized for
small and medium companies, and which is less complex and will
therefore require less effort and money for its application. Further
work is also required to refine the prototype of SREPPLineTool that
we have developed to support SREPPLine and the Security Re-
sources Repository, which was one of the lessons learned in the
case study performed at the Spanish Public Administration par-
tially described in [45]. This will be done in order to assist in the
complex management and maintainability of the Security Refer-
ence Meta Model and its variability and traceability relations.
The process, the meta-model and the tool have been shown to
work well in a small SPL with relatively few artefacts and therefore
few security requirements related artefacts, as in [45] and in the
example briefly described in this paper. They have not yet, how-
ever, been tested in large product lines. We shall therefore carry
out a refinement of our process, the tool and the meta model by
testing them with a complete and exhaustive real industrial case
study in a large SPL in order to validate and illustrate SREPPLine
in far greater depth. We thus aim to provide a holistic and vali-
dated framework for security requirements engineering in SPL.

Acknowledgments

This research is part of the BUSINESS (PET2008-0136) Project of
the Ministry of Science and Innovation (Spain), PEGASO/MAGO
(TIN2009-13718-C02-01) Project of the Ministry of Science and
Innovation (Spain) and the FEDER. Moreover, it is part of the SIST-
EMAS (PII2109-0150-3135) and QUASIMODO (PAC08-0157-0668)
Projects of the Castilla — La Mancha Regional Government and
the FEDER as well as it is part of the MEDUSAS (IDI-20090557) Pro-
ject of the Ministry of Science and Innovation (Spain- CDTI).

Appendix A. Grammar of the security reference model

This appendix provides details of the grammar for the different
types of artefacts considered in the Security Reference Model:
security feature, asset, threat and security requirement along with
their respective categories.

In Fig. 8 “x” represents multiplicity; “{---}" represents addi-
tional information that could be filled in; and the artefacts are
between “<...>"). The other elements are depicted in the figures
(Figs. 9-12). This grammar registers the elements and their rela-
tions which are managed by the meta model. As shown in Fig. 8,
the Security Reference Model grammar is based on five core
elements: the security reference model, the variability element,

1114

D. Mellado et al. /Information and Software Technology 52 (2010) 1094-1117

security reference medel::=
<sec-ref mecdel>

<variability element>*
</sec-ref model>

variability element::=

<variability element>
<variability element_id>
{variability wvariant variation-point}
$name#
[descripticon]
<dependence>*
{var-dependence>*

</variability element>

dependence: :=
<dependence>
$name¢
{artefact_id artefact_name
artefact_category}*
</dependence>

var—dependence::=
<wvar-dependence>
#name#
{var-dependence-type optional
mandatory}
{variability element}*
</var-dependence>

artefact::=
<artefact>
#name#
{artefact-type application product-
line}
<security_feature asset
gecurity_cbjective threat
security_requirement>
</artefact>

Fig. 8. Core of the Grammar of the Security Reference Model.

security feature categories::=
<security feature categories>
{security feature category}*
</security feature categories>

security feature category::=
<security feature category>
<security feature id>
#category name#
[description] [asset categories]
[Common Criteria classes]
[IS027001 clauses]
{security feature category}*
</security feature category>

security feature::=

<security feature>
<security feature id>
¢security feature name#
[description]
<security feature categories>
<dependence>*

</security feature >

security feature app::=
<security feature app>
<security feature app id>
#gecurity feature app name#
[description]
<security feature id> (security
feature of the SPL domain)
<gecurity feature categories>
<dependence>*
</security feature app>

asgset categories::=

<asset categories>
{asset category}*
</asset categories>

aggset category::=

<asset category>
<category id>
#¢category name#
[description]
[security objective categeories]
[security feature categories]
{asset categeryl}*

</asset category>

asset::=

<asset>
<asset id>
$asset names
[description]
<assgset categories>
<dependence>*

</asset>

asset-app::=

<asset-app>
<asset-app id>
#asset-app name#
[description]
<asset id> (asset del dominic LPS)
<asset categcries>
<dependence>*

</asset-app>

Fig. 9. Grammar of the Security Reference Model (security features and assets).

dependence, var-dependence and artefact. After Fig. 8 it is
provided details of the grammar used for the different types of
artefacts that are considered in the Security Reference Model:
security feature, asset, threat and security requirement, along with
their respective categories.

As is described in Fig. 8, a ‘security reference model’ is com-
posed of variability elements. A ‘variability element’ is a variant
or a variation point, which could have variability dependences
(‘var-dependence’) with other ‘variability elements’, that is, with
other variants or variation points. The grammar therefore registers

D. Mellado et al. /Information and Software Technology 52 (2010) 1094-1117

security objectiwves categories::=
<gecurity objectives categories>
{security objective categoryl*
</security cbjectives categories>

security objective category::=
<security objective category>
<category id>
$category name#
[descripticn] [threat
categories]
[asset categeories)
</security cobjective category>

security objective::=

<gecurity cbjective>
<security objective id>
#3ecurity cbjective names#
[description]
< <agset> <gecurity cbjective>

<value> >*

<security cbjective category>
<dependence>*

</security objective >

security objective app:i:=

<security objective appr
<security cbjective app id»
#security cbjective app name#
[descripticon]
< <asset-app> <security objective app>

<value> >#

<gecurity objective id> (SPL domain
security cbjective)
<gecurity objective category>»
<dependence>*

</security cbjective app>

Fig. 10. Grammar of the Security Reference Model (security objectives).

threat categories::=
<threat categories>
{threat category}*
</threat categories>

threat category::=
<threat category>
<category id>
$category name#
[description]
[security objective categories]
[asset categories]
[security requirement
categories]
[Common Criteria families]
[IS027001 control objectives]
[misuse-case template]
[attack-tree template]
{threat category}*
¢/threat category>

threat: :=
<threat>
<threat id>
#threat name#
[description]
< <asset>», <security objective>
<degradatien value> <frequency value>
<impact_value> <risk_value>
[<residual_risk_wvalue>] >*
[misuse-case template]
[attack-tree template]
<threat categories>
<dependence>*
</threat>

threat-app: =
<threat-app>
<threat-app id>
#threat-app name#
[descripticn]
< <asset-app>, <security cbjective>
<degradaticn_value> <frequency value>
<impact_value> <risk_value>
[<residual_risk_wvalue>] >*
<threat id> (threat of SPL domain)
[misuse-case template]
[attack-tree template]
<threat categories>
<dependence>*
</threat-app>

1115

Fig. 11. Grammar of the Security Reference Model (threats).

the ‘variability dependency’. A ‘variability element’ could also have ters the ‘VP artefact dependency’ and ‘artefact dependency’ de-
‘dependences’ with ‘artefacts’, and this is how the grammar regis- picted in Fig. 2. An ‘artefact’ may be part of the application or of

1116

D. Mellado et al. /Information and Software Technology 52 (2010) 1094-1117

security requirement categories::=
<gecurity requirement categories>
{security requirement category}*
</3ecurity requirement categories>

security requirement category::=
<security requirement category>
<sgsecurity requirement category id>
§category name#
[description]
[threat categories]
[countermeasure categories]
[Common Criteria component]
[I5027001 contrel]
[security-use-case template]
{security requirement category}*
</3ecurity reguirement category>

security requirement::=
<gecurity requirement>
<security requirement id>
§security requirement name¢
[description]

protection profile::=

<protectiocn profile>
<protecticn preofile id>
$protection prefile nameg
[description]
<security requirement categories>
{protecticn prefile categoryl*
<dependence>*

</protection profile>

security target::=

<gecurity target>
<security target id>
$3security target namesf
[desacription]
<protecticn preofile>
<gecurity requirement categories>
{security target category}*
<dependence>*

</3ecurity target>

security regquirement app::=
<gecurity requirement app>

[security-use-case template]
<security requirement categories>
<dependence>*

</gsecurity reguirement>

</security requirement app>

<security requirement app id>
$security requirement app nameg
[description]

[security-use-case template]
<gecurity requirement id> (security
requirement of the SPL domain)
<security regquirement categories>
<dependence>*

Fig. 12. Grammar of the Security Reference Model (security requirements).

the product line and must be one of the following types (whose
grammars are shown next): security feature, asset, threat and
security requirement.

References

[1] S. Abu-Nimeh, S. Miyazaki, N.R. Mead, Integrating privacy requirements into
security requirements engineering, in SEKE, 2009, pp. 542-547.

[2] C. Alberts, A. Dorofee, OCTAVE Method Implementation Guide v2.0, C.M.U.
Software Engineering Institute, Editor, 2001, Pittsburgh (USA).

[3] J.L. Arciniegas,].C. Duefias, J.L. Ruiz, R. Cerén,]. Bermejo, M.A. Oltra,
Architecture reasoning for supporting product line evolution: an example on
security, in: T. Kdkold, J.C. Duefias (Eds.), Software Product Lines: Research
Issues in Engineering and Management, Springer, 2006.

[4] L. Aversano, G. Canfora, A.D. Lucia, P. Gallucci, Business process reengineering
and workflow automation: a technology transfer experience, The Journal of
Systems and Software (2002) 29-44.

[5] L. Baresi, S. Morasca, Three empirical studies on estimating the design effort of
web applications, ACM Transactions on Software Engineering and
Methodology (TOSEM) 16 (4) (2007) 15-1-15-40.

[6] Bastian Best, Jan Jiirjens, B. Nuseibeh, Model-based security engineering of
distributed information systems using UMLsec, in: 29th International
Conference on Software Engineering (ICSE 2007), 2007, pp. 581-590.

[7]]. Bayer, S. Gerard, O. Haugen,]. Mansell, B. Moller-Pedersen,]. Oldevik, P.
Tessier, J.-P. Thibault, T. Widen, Consolidated product line variability modeling,
in: T.Kdkold, J.C. Duefias (Eds.), Software Product Lines: Research Issues in
Engineering and Management, 2005, pp. 195-241.

[8] P. Berander, A. Andrews, Requirements prioritization, in: A. Aurum, C. Wohlin
(Eds.), Engineering and Managing Software Requirements, 2005, pp. 69-94.

[9] A. Birk, G. Heller, Challenges for requirements engineering and management in
software product line development, in: International Conference on
Requirements Engineering (REFSQ 2007), 2007, pp. 300-305.

[10] J. Bosh, Design & Use of Software Architectures, Pearson Education Limited,
2000.

[11] S. Bithne, G. Halmans, K. Lauenroth, K. Pohl, Scenario-based application
requirements engineering, in: T. Kdkold,].C. Dueiias (Eds.), Software Product
Lines - Research Issues in Engineering and Management, 2005, pp. 161-194.

[12] CERT/CC, CERT/CC Statistics 1995-2008, 2009. <http://www.cert.org/stats/
fullstats.html>.

[13] P. Clements, L. Northrop, Software Product Lines: Practices and Patterns, SEI
Series in Software Engineering, Addison-Wesley, 2002.

[14] L. Compagna, P.E. Khoury, A. Krausova, F. Massacci, N. Zannone, How to
integrate legal requirements into a requirements engineering methodology for
the development of security and privacy patterns, Artificial Intelligence and
Law 17 (1) (2009) 1-30.

[15] K.-K.R. Choo, R.G. Smith, R. McCusker, Future directions in technology-enabled
crime: 2007-09, in: Research and Public Policy Series, Australian_Government,
Editor, 2007, Australian Institute of Criminology.

[16] T.E. Faegri, S. Hallsteinsen, A software product line reference architecture for
security, in: T. Kdkold,].C. Duefas (Eds.), Software Product Lines: Research
Issues in Engineering and Management, Springer, 2006.

[17] D.G. Firesmith, Engineering security requirements, Journal of Object
Technology 2 (1) (2003) 53-68.

[18] D.G. Firesmith, Security use cases, Journal of Object Technology (2003) 53-64.

[19] D.G. Firesmith, Engineering safety and security related requirements for
software intensive systems, in: International Conference on Software
Engineering, [EEE Computer Society, 2007, p. 169.

[20] P. Giorgini, H. Mouratidis, N. Zannone, Modelling security and trust with
Secure Tropos, in: H. Mouratidis, P. Giorgini (Eds.), Integrating Security and
Software Engineering: Advances and Future Visions, Idea Group Publishing,
2007, pp. 160-189.

[21] P. Griinbacher, N. Seyff, Requirements negotiation, in: A. Aurum, C. Wohlin
(Eds.), Engineering and Managing Software Requirements, 2005, pp. 143-
162.

[22] C.B. Haley, R. Laney,].D. Moffet, B. Nuseibeh, Security requirements
engineering: a framework for representation and analysis, IEEE Transactions
on Software Engineering 34 (1) (2008) 133-153.

[23] ISO/IEC, ISO/IEC 13335 Information Technology - Security Techniques
- Management of Information and Communications Technology Security,
2004.

[24] ISO/IEC, ISO/IEC 15446 Information Technology - Security Techniques - Guide
for the Production of Protection Profiles and Security Targets, 2004.

[25] ISO/IEC, ISO/IEC 15408:2005 Information Technology — Security Techniques —
Evaluation Criteria for IT Security (Common Criteria v3.0), 2005.

[26] ISO/IEC, ISO/IEC 27001 Information Technology - Security Techniques -
Information Security Management Systems - Requirements, 2006.

D. Mellado et al. /Information and Software Technology 52 (2010) 1094-1117 1117

[27]]J. Jurjens, UMLsec: extending UML for secure systems development, in: UML
2002 - The Unified Modeling Language. Model Engineering, Languages,
Concepts, and Tools. 5th International Conference, LNCS 2460, 2002, pp.
412-425.

[28] J. Jirjens, Secure Systems Development with UML, Springer Academic
Publishers, 2005.

[29] J. Jurjens,]J. Schreck, Y. Yu, Automated analysis of permission-based security
using UMLsec, in: Fundamental Approaches to Software Engineering (FASE
2008), held as part of the Joint European Conferences on Theory and Practice of
Software (ETAPS 2008), 2008, pp. 292-295.

[30] K. Kang, S. Cohen, J.A. Hess, W.E. Novak, S.A. Peterson, Feature-Oriented
Domain Analysis (FODA) Feasibility Study, Software Engineering Institute,
Carnegie-Mellon University, 1990.

[31] H.-K. Kim., Automatic Translation Form Requirements Model into Use Cases
Modeling on UML. ICCSA 2005, LNCS, 2005, pp. 769-777.

[32] C. Kuloor, A. Eberlein, Aspect-oriented requirements engineering for software
product lines, in: Proceedings of the 10th IEEE International Conference and
Workshop on the Engineering of Computer-Based Systems (ECBS'03), 2003.

[33] Awv. Lamsweerde, Elaborating security requirements by construction of
intentional anti-models, in: 26th International Conference on Software
Engineering (ICSE 2004), 2004, pp. 148-157.

[34] J. Lasheras, R. Valencia-Garcia,].T. Fernandez-Breis, A. Toval, An ontology-
based framework for modelling security requirements, in: The 6th
International Workshop on Security in Information Systems - WOSIS, 2008.

[35] H.A. Linstone, M. Turoff, in: H.A. Linstone, M. Turoff (Eds.), The Delphi Method:
Techniques and Applications, Addison-Wesley Publishing Company, 1975.

[36] L. Liu, ES.K. Yu,]J. Mylopoulos, Security and privacy requirements analysis
within social setting, in: 11th IEEE International Requirements Engineering
Conference (RE’03), 2003.

[37] MAP, Methodology for Information Systems Risk Analysis and Management,
in: Ministry for Public Administration, 2005.

[38] F. Massacci, M. Prest, N. Zannone, Using a security requirements engineering
methodology in practice: the compliance with the Italian data protection
legislation, Computers Standards and Interfaces (2005) 445-455.

[39] N.R. Mead, E.D. Hough, Security requirements engineering for software
systems: case studies in support of software engineering education, in:
CSEERT, 2006, pp. 149-158.

[40] N.R. Mead, E. Hough, T. Stehney, Security Quality Requirements Engineering
(SQUARE) Methodology, (CMU/SEI-2005-TR-009), Software Engineering
Institute, Carnegie Mellon University, Pittsburgh (USA), 2005.

[41] D. Mellado, E. Fernandez-Medina, M. Piattini, A comparative study of proposals
for establishing security requirements for the development of secure
information systems, in: The 2006 International Conference on
Computational Science and its Applications (ICCSA 2006), vol. 3, Springer
LNCS 3982, 2006, pp. 1044-1053.

[42] D. Mellado, E. Fernandez-Medina, M. Piattini, A common criteria based
security requirements engineering process for the development of secure
information systems, Computer Standards and Interfaces 29 (2) (2007) 244-
253.

[43] D. Mellado, E. Ferndndez-Medina, M. Piattini, Security requirements variability
for software product lines, in: Symposium on Requirements Engineering for

Information Security (SREIS 2008) co-located with ARES 2008, 2008, pp. 1413-
1420.

[44] D. Mellado, C. Blanco, L.E. Sanchez, E. Fernandez-Medina, A systematic review
of security requirements engineering, Computers Standards & Interfaces 32
(2010) 153-165.

[45] D. Mellado, E. Fernindez-Medina, M. Piattini, Towards security require-
ments management for software product lines: a security domain
requirements engineering process, Computer Standards & Interfaces 30
(2008) 361-371.

[46] D. Mellado, E. Ferndndez-Medina, M. Piattini, A systematic review of security
requirements engineering, Computers Standards & Interfaces, 2010. <http://
dx.doi.org/10.1016/j.csi.2010.01.006> (accessed 02.02.10).

[47] D. Mellado,]. Rodriguez, E. Fernandez-Medina, M. Piattini, Automated support
for security requirements engineering in software product line domain
engineering, in: The Fourth International Conference on Availability,
Reliability and Security (ARES 2009), 2009.

[48] E. Niemeld, A. Immonen, Capturing quality requirements of product family
architecture, Information & Software Technology (2007) 1107-1120.

[49] OECD, The promotion of a culture of security for information systems and
networks in OECD countries, in: DSTI/ICCP/REG(2005)1/FINAL, Organisation
for Economic Co-operation and Development, 2005.

[50] OMG, Reusable Assets Specification (RAS), 2004 (ptc/04-06-06).

[51] OMG, Software & Systems Process Engineering Meta-Model Specification v.2.0,
2008. <http://www.omg.org/spec/SPEM>.

[52] A.L. Opdahl, G. Sindre, Experimental comparison of attack trees and misuse
cases for security threat identification, Information and Software Technology
51 (5) (2010) 916-932.

[53] K. Pohl, G. Bockle, F.v.d. Linden, Software Product Line Engineering,
Foundations, Principles and Techniques, Berlin Heidelberg, Berlin, 2005.

[54] K. Schmid, I. John, A customizable approach to full-life cycle variability
management, Science of Computer Programming, vol. 53, Elsevier, 2004, pp.
259-284.

[55] K. Schmid, K. Krennrich, M. Eisenbarth, Requirements Management for
Product Lines: A Prototype, Fraunhofer IESE, 2005.

[56] B. Schneier, Attack trees, Dr. Dobb’s Journal 24 (12) (1999).

[57] SEI, +SAFE, V1.2 A Safety Extension to CMMI-DEV V1.2. 2007, Pittsburgh (USA):
Software Engineering Institute, Carnegie Mellon University.

[58] G. Sindre, D.G. Firesmith, A.L. Opdahl. A reuse-based approach to determining
security requirements, in: Proc. 9th International Workshop on Requirements
Engineering: Foundation for Software Quality (REFSQ’03), Austria, 2003.

[59] G. Sindre, A.L. Opdahl, Eliciting security requirements with misuse cases,
Requirements Engineering 10 (1) (2005) 34-44.

[60] M. Sinnema, S. Deelstra, J. Nijhuis, J. Bosch, COVAMOF: a framework for
modeling variability in software product families, in: Proc. of the Third Softw.
Product Line Conf. (SPLC 2004), Boston, MA, USA, 2004.

[61] A. Toval,]. Nicolas, B. Moros, F. Garcia, Requirements reuse for improving
information systems security: a practitioner’s approach, Requirements
Engineering (2002) 205-219.

[62] E. Yu, L. Liu, Mylopoulos, A Social Ontology for Integrating Security and
Software Engineering, in: Integrating Security and Software Engineering:
Advances and Future Visions, Idea Group Publishing, 2007.

